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Abstract The paper concerns L1-convergence to equilibrium for weak solutions of the spa-
tially homogeneous Boltzmann Equation for soft potentials (−4 ≤ γ < 0), with and without
angular cutoff. We prove the time-averaged L1-convergence to equilibrium for all weak so-
lutions whose initial data have finite entropy and finite moments up to order greater than
2 + |γ |. For the usual L1-convergence we prove that the convergence rate can be controlled
from below by the initial energy tails, and hence, for initial data with long energy tails, the
convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on
the collision kernel with −1 ≤ γ < 0, there are algebraic upper and lower bounds on the rate
of L1-convergence to equilibrium. Our methods of proof are based on entropy inequalities
and moment estimates.

Keywords Boltzmann equation · Soft potentials · Weak solutions · Strong convergence ·
Equilibrium

1 Introduction

While convergence to equilibrium for solutions of the spatially homogeneous Boltzmann
equation has been extensively studied for hard potentials and Maxwellian molecules, much
less is known in the case of soft potentials. For instance, for the hard sphere model, it has
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been proven that solutions of the equation for all initial data that have finite mass and energy
always converge strongly to equilibrium at an exponential rate. The same result holds for
all hard potentials with angular cutoff under only mild additional assumptions on the initial
data f0; e.g., that f0 is square integrable. See [21] and references therein.

For Maxwellian molecules with angular cutoff, one again has exponential convergence to
equilibrium if the initial data have finite moments up to order s > 2, although for s = 2 the
convergence rate can be arbitrarily slow [7]. (In the Maxwellian case, as in the hard sphere
case, there is no need to make any assumption such as square integrability of f0, or even
that the initial entropy be finite.)

For soft potentials, existing bounds [13, 24] on the rate of convergence to equilibrium are
only algebraic, and so far have been obtained under certain cutoffs, not only in the angle, but
also on the singularity in small relative velocities (which is present for soft potentials). It is
commonly believed that for soft potentials, the convergence rate actually is generally worse
than the former cases, and that the algebraic bounds found in the references cited above are
at least qualitatively sharp.

In this paper, we show that this is indeed the case. Moreover, we also prove convergence
results for a very broad class of weak solutions, and for a range of very soft potentials. The
convergence results that we obtain at this broadest level of generality are exactly that: They
assert convergence, in either a time averaged sense, or in the usual sense, but with no rate at
all.

However, in the case of angular cutoff, and with a potential that is not too soft, we are
able to prove much more: In particular, we shall show that for a natural class of weak so-
lutions, if the initial data has moments of all orders, then the solution converges strongly
in L1(RN, (1 + |v|2)dv) to its Maxwellian equilibrium at a super-algebraic rate; i.e., faster
than any inverse power of the time t . In proving this result we rely in part on an entropy
production inequality of Villani [28], but also introduce a new strategy to avoid the use of
pointwise lower bounds on the solution f that were used in [28].

While our results require moments of all orders on the initial data to ensure a super-
algebraic rate of relaxation, we do not require the initial data to be already close to equi-
librium. Indeed, the rate of relaxation in the close-to-equilibrium regime has been thor-
oughly investigated in the papers of Caflisch [4, 5] and Guo and Strain [16], who proved
“stretched exponential” convergence (i.e., O(e−ta ) for some 0 < a < 1). However, to apply
such bounds, one requires the initial data to be in close to equilibrium in a strong sense, and
with extremely strong control of the energy tails.

One crucial difference between hard potentials, Maxwellian molecules, and soft poten-
tials shows up in the different behavior concerning energy tails: In the case of hard potentials
with an angular cutoff, even if the initial data has no moments of order higher than 2, the so-
lution at any strictly positive time will have moments of all orders [30]. That is, long energy
tails, which are an obstacle to rapid convergence, are immediately eliminated for hard po-
tentials. This is not the case for Maxwellian molecules, but at least whatever control one has
on the energy tails of the initial data is propagated uniformly in time. For soft potentials, the
situation is much less favorable, and there is no propagation of higher moments uniformly
in time. Instead, one has bounds on the growth of such moments, or uniform bounds on their
time averages, as found in [12]. Such moment bounds play a crucial role in this paper, and
we shall prove several new and strengthened results of this type.

Before proceeding with the introduction of our results, let us first precisely specify the
equation to be studied and the notation that we shall use.
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1.1 The Boltzmann Equation for Soft and Very Soft Potentials

The spatially homogeneous Boltzmann equation is given by (see [9–11])

∂

∂t
f (v, t) = Q(f )(v, t), (v, t) ∈ (0,∞) × RN (B)

where N ≥ 2,

Q(f )(v, t) =
∫

RN ×SN−1
B(v − v∗, σ )(f ′f ′

∗ − ff∗)dσdv∗, (1.1)

f = f (v, t), f ′ = f (v′, t), f∗ = f (v∗, t), f ′∗ = f (v′∗, t),

v′ = v + v∗
2

+ |v − v∗|σ
2

, v′
∗ = v + v∗

2
− |v − v∗|σ

2
, σ ∈ SN−1

and SN−1 is the unit sphere in RN . The collision kernel B(z,σ ) is a nonnegative Borel
function of (|z|, cos θ), i.e.

B(z,σ ) = B(|z|, cos θ), cos θ = 〈z/|z|, σ 〉, z = v − v∗ 
= 0.

In the case of main physical interest, N = 3. Then, if the potential energy function that
governs the interaction between pairs of molecules in the dilute gas is an inverse power of
the distance separating them, B takes the form

B(z,σ ) = b(cos θ)|z|γ (1.2)

with the exponent γ depending on the power in the interaction. The following ranges of
γ are distinguished [9, 10] by the methods required to treat them: The range 0 < γ < 1
corresponds to hard potentials, γ = 0 to Maxwellian molecules, and γ < 0 to soft potentials,
with the case γ < −2 corresponding to very soft potentials [28].

These distinctions pertain to the different strategies that must be employed in studying so-
lutions of (B), or even interpreting it, for γ in the different ranges. When γ is negative, both
the singularity in B(z,σ ) at z = 0, and the vanishing of B(z,σ ) at z = ∞ cause difficulties
that partially account for the fact that soft potentials have been less intensively investigated
than Maxwellian molecules or hard potentials. The problems caused by the vanishing of
B(z,σ ) at z = ∞ include the fact that with soft potentials, one does not have uniform in
time bounds on higher order moments of solutions; we shall return to this shortly.

The problems caused by the singularity in B(z,σ ) at z = 0 are more immediate: This
singularity precludes a naive approach to making sense of the integral in (1.1), and hence
complicates the interpretation of the equation itself.

Q(f ) is a difference of two integrals, and if each of them is to be integrable, it would
have to be the case that

B(v − v∗, σ )f ′f ′
∗ and B(v − v∗, σ )ff∗

would both be integrable on R3 × R3 × S2. When B takes the form B(z,σ ) = b(cos θ)|z|γ
as in (1.2), with the exponent γ and 0 < γ ≤ 2, at least the integration over R3 × R3 poses
no problem: As is well known, solutions of the Boltzmann equation (B) should conserve
energy, and so an a priori bound on

∫
R3(1 + |v|2)f (v)dv is natural to assume. Granted this,

the integrability over R3 × R3 is obvious.
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There still remains the fact that for inverse power law potentials, the function b(cos θ) in
(1.2) is not integrable on S2, and so in many studies of (B) for hard potentials, one invokes
a “Grad angular cut-off” to truncate b(cos θ) so that it becomes integrable.

For soft potentials, the situations is more delicate: Lack of integrability of b(cos θ) is not
the only problem. When γ is negative, the function

|v − v∗|γ f (v)f (v∗) (1.3)

is not in general integrable on R3 × R3 under any natural hypothesis on f . The finite en-
ergy condition does not help, nor does the H -Theorem, which would justify assuming that
f logf is integrable. By the Hardy-Littlewood-Sobolev inequality, the function in (1.3)
would be integrable if f belonged to L6/(6+γ )(R3), but there is no reason to expect con-
trol on this Lp norm along any general class of solutions of (B).

To proceed, let ϕ be a test function, and note that by standard formal calculations (see
e.g. [25]), if we define

�ϕ(v′, v′
∗, v, v∗) := ϕ(v′) + ϕ(v′

∗) − ϕ(v) − ϕ(v∗) (1.4)

and define

Q(f |�ϕ)(v) =
∫

R3×S2
B(v − v∗, σ )(f ′f ′

∗ − ff∗)�ϕ dσdv∗,

then we would have
∫

R3
ϕ(v)Q(f )(v)dv = −1

4

∫
R3

Q(f |�ϕ)(v)dv.

It can be shown (see Lemma 2.1 below, and the references cited there) that the following
pointwise bound holds:

|�ϕ| ≤ C|v − v∗|2 sin θ, (1.5)

where C is a constant depending on the second derivatives of ϕ. Moreover, if one first
averages �ϕ with respect to the angle around the axis defined by v − v∗, one can improve
the right hand side to

C|v − v∗|2 sin2 θ.

For −2 ≤ γ ≤ 0, the factor |v − v∗|2 is enough to deal with the factor |v − v∗|γ in (1.3),
and thus—neglecting for the moment problems with b(cos θ)—the bound (1.5) provides
what is needed to make sense of a weak form of (B) for γ in this range.

The analysis of this case was initiated by Arkeryd [2], who actually considered only
−1 ≤ γ < 0, and it was carried forward by a number of authors. See [25] for a discussion of
the history.

The case γ < −2 is more subtle; there is nothing more to be squeezed out of �ϕ to
help with the singularity at z = 0. Results in this very soft range were first obtained by
Villani [25]. A key idea in his work is to use an additional regularity estimate on the solutions
f coming not from the entropy itself, but from the entropy production. Later, we shall return
to this point in more detail. Hopefully now at least it is clear where the distinction between
soft and very soft potentials comes from.

There is still the problem that for inverse power law interactions, the function b(cos θ) is
not integrable on S2. The problem comes from a singularity in the small θ collisions; i.e., the
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grazing collisions. Whenever one wishes to consider Q(f ) as a difference of two separate
integrals—the gain and loss terms—it is necessary to impose a Grad angular cut-off which
is the assumption that b(cos θ) is integrable on S2.

However, for many purposes, this is unnecessary, and one can takes advantage of the
weak form Q(f |�ϕ) and the extra factors of sin θ in (1.5) and the bound below it. This
takes care of the singularity in b(cos θ) for −3 < γ < 1, since in this case one has

∫
S2

B(z,σ ) sin2 θ dσ = const.|z|γ < ∞.

The case γ = −3 is the Coulomb potential, and is therefore of particular interest. How-
ever, in this case B(z,σ ) = C0(sin(θ/2))−4|z|−3, so that

∫
S2

B(z,σ ) sin2 θ dσ = ∞.

This difficulty with the Coulomb interaction is a genuine part of the physics, and not a
weakness of current technical tools. Without an angular cut-off, the Boltzmann equation
does not make sense for the Coulomb interaction. See [25] for further discussion of this, and
what is done in plasma physics to study the kinetics of plasmas nonetheless.

Here, we stay within the framework of the Boltzmann equation (B) with N ≥ 2, and often
will simply require of b(cos θ) the mild cut-off hypothesis that b(cos θ) sin2 θ is integrable
on SN−1:

In this paper we shall always require at least that B(z,σ ) satisfies the finite momentum
transfer condition:

∫
SN−1

B(z,σ ) sin2 θ dσ ≤ A∗|z|γ , −4 ≤ γ < 0 (1.6)

for some constant 0 < A∗ < ∞. This is not a cut-off condition; the difference between this
and the more restrictive Grad angular cut-off condition is the factor of sin2 θ in the integral,
and while the Grad condition does not hold for molecules interacting through any inverse
power force law, (1.6) is satisfied for all inverse power force laws r−s with s < 2. That is,
(1.6) is satisfied right up to the Coulomb interaction. The insight that for many purposes one
could dispense with a Grad cut-off, and instead use only the natural condition (1.6) is due to
Goudon [15] and Villani [25].

Moreover, the reason we have called (1.6) the finite momentum transfer condition is that
it has a physical meaning: It is satisfied for a given interaction if and only if the total cross
section for momentum transfer for that interaction is finite. See [25] and [22] for further
discussion on this point.

In addition to the upper bound in (1.6), we shall also sometimes need to invoke a corre-
sponding lower bound. For instance, to prove the moment estimates mentioned above, and
prove the convergence to equilibrium, we assume in addition that B(z,σ ) > 0 for almost
every (z, σ ) ∈ RN × SN−1 and there is a constant 0 < A∗ < ∞ such that

∫
SN−1

B(z,σ ) sin2 θdσ ≥ A∗(1 + |z|2)γ/2, −4 ≤ γ < 0. (1.7)

1.2 Weak Solutions of the Boltzmann Equation

Having explained the difference between soft and very soft potentials, and the kinds of cut-
off assumptions we shall consider, we are ready to introduce the class of weak solutions of
(B) that we shall study.



686 E.A. Carlen et al.

Equation (B) for soft potentials is usually investigated by entropy and moment methods
with working spaces of Lebesgue measurable functions f : RN → R

L1
0(R

N) = L1(RN), L1
s (R

N) =
{
f

∣∣∣‖f ‖L1
s
:=

∫
RN

〈v〉s |f (v)|dv < ∞
}

, s ∈ R,

L1
s logL(RN) =

{
f

∣∣∣
∫

RN

〈v〉s |f (v)|(1 + | logf (v)|)dv < ∞
}

where and throughout the paper we use the notation

〈v〉 = (1 + |v|2)1/2.

The entropy (Boltzmann H -functional) and the entropy dissipation are given by

H(f ) =
∫

RN

f (v) logf (v)dv, 0 ≤ f ∈ L1 logL(RN),

D(f ) = 1

4

∫
RN ×RN ×SN−1

B(v − v∗, σ )(f ′f ′
∗ − ff∗) log

(
f ′f ′∗
ff∗

)
dσdv∗dv.

(1.8)

Here and below we define (a − b) log(a/b) = ∞ if a > b = 0 or b > a = 0; (a − b)×
log(a/b) = 0 if a = b = 0.

As noted above, in order to establish a weak form of (B), we need to be able to make
sense of the expression ∫

SN−1
B(|v − v∗|, cos θ)�ϕ dσ

even when, due to the singularity in B at θ = 0, the integrand is not integrable. As we
shall see in Sect. 2, this can be done under smoothness assumptions on ϕ provided we first
integrate over all the variables in SN−1 except θ , and then integrate over θ . That, is with
k = (v − v∗)/|v − v∗|, we can parameterize SN−1 by (θ,ω) ∈ [0,π]× SN−2(k) through σ =
cos(θ)k + sin(θ)ω. Using this parameterization, and interpreting the integral as an iterated
integral, we shall show in Sect. 2 that when ϕ is sufficiently smooth, integrating first in ω

renders the θ integral convergent. On this basis (see Sect. 2 for details), we define for all
ϕ ∈ C2(RN)

L[�ϕ](v, v∗) =
∫ π

0
B(|v − v∗|, cos θ) sinN−2 θ

(∫
SN−2(k)

�ϕ dω

)
dθ (1.9)

where �ϕ = �ϕ(v′, v′∗, v, v∗) is given by (1.4).
The relevant space T of test functions ϕ for which this construction works is given by

T =
{
ϕ ∈ C2(RN)

∣∣∣ sup
v∈RN

(〈v〉−2|ϕ(v)| + 〈v〉−1|∂ϕ(v)| + |∂2ϕ(v)|) < ∞
}
,

where

∂ϕ(v) = (∂v1ϕ(v), . . . , ∂vN
ϕ(v)),

∂2ϕ(v) = (
∂2

vivj
ϕ(v)

)
N×N

,
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|∂ϕ(v)| =
( ∑

1≤i≤N

|∂vi
ϕ(v)|2

)1/2

and |∂2ϕ(v)| =
⎛
⎝ ∑

1≤i,j≤N

|∂2
vivj

ϕ(v)|2
⎞
⎠

1/2

.

As in the previous subsection, we also define, here for all ϕ ∈ T ,

Q(f |�ϕ)(v) =
∫

RN ×SN−1
B(v − v∗, σ )(f ′f ′

∗ − ff∗)�ϕ dσdv∗.

By formal calculation we have
∫

RN

ϕ(v)Q(f )(v)dv = −1

4

∫
RN

Q(f |�ϕ)(v)dv = 1

2

∫
RN ×RN

L[�ϕ](v, v∗)ff∗dv∗dv.

Referring to Arkeryd [2] and Goudon [15] (for −1 ≤ γ < 0 and −2 ≤ γ < 0 respectively)
and Villani [25] (for −4 < γ < 0), we introduce

Definition of Weak Solutions Suppose the kernel B satisfies (1.6). Let 0 ≤ f0 ∈ L1
2 ∩

L1 logL1(RN). A nonnegative measurable function f (v, t) on RN ×[0,∞) is called a weak
solution of (B) with f (v,0) = f0(v) if the following (i), (ii) hold:

(i) f ∈ L∞([0,∞);L1
2 ∩ L1 logL1(RN)) and

H(f (t)) +
∫ t

0
D(f (τ))dτ ≤ H(f0), t ≥ 0. (1.10)

(ii) For all ϕ ∈ T , if −4 ≤ γ < −2, then
∫

RN

ϕ(v)f (v, t)dv =
∫

RN

ϕ(v)f0(v)dv − 1

4

∫ t

0
dτ

∫
RN

Q(f |�ϕ)(v, τ )dv, t ≥ 0;
(1.11)

and if −2 ≤ γ < 0, then
∫

RN

ϕ(v)f (v, t)dv =
∫

RN

ϕ(v)f0(v)dv + 1

2

∫ t

0
dτ

∫
RN ×RN

L[�ϕ]ff∗dv∗dv, t ≥ 0.

(1.12)

Note that the particular functions ϕ(v) = 1, vi (i = 1,2, . . . ,N) and |v|2 all belong to
T and satisfy �ϕ ≡ 0. So the above definition implies that every weak solution f of (B)
conserves the mass, momentum and energy, i.e.

∫
RN

(1, v, |v|2)f (v, t)dv =
∫

RN

(1, v, |v|2)f0(v)dv, t ≥ 0.

It will be seen that the collision integrals in (ii) are absolutely convergent with respect to
the total measure dσdv∗dvdτ and dv∗dvdτ respectively (see Lemma 2.2 below). For very
soft potentials, −4 ≤ γ < −2, this is essentially due to the entropy inequality (1.10) as first
noted in [25]; the corresponding weak solutions are also called H -solutions.

We shall prove in Sect. 3 that the integral equations (1.11) and (1.12) are both equivalent
to a full and common version like (1.11) with ϕ ∈ C1

b (R
N ×[0,∞))∩L∞([0,∞);C2

b (R
N))

where

C2
b (R

N) =
{
ϕ ∈ C2(RN)

∣∣∣ sup
v∈RN

(|ϕ(v)| + |∂ϕ(v)| + |∂2ϕ(v)|) < ∞
}
.
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The precise statement of this equivalence is given in the following proposition:

Proposition 1.1 Suppose the kernel B satisfies (1.6). Let 0 ≤ f0 ∈ L1
2 ∩ L1 logL1(RN),

0 ≤ f ∈ L∞([0,∞);L1
2 ∩L logL(RN)) satisfy the entropy inequality (1.10) and f |t=0 = f0.

Then the following are equivalent (for total range −4 ≤ γ < 0):

(a) f is a weak solution of (B).
(b) f satisfies (1.11) for all ϕ ∈ C2

b (R
N).

(c) f satisfies the following equation: For all ϕ ∈ C1
b (R

N ×[0,∞))∩L∞([0,∞);C2
b (R

N))

∫
RN

ϕ(v, t)f (v, t)dv =
∫

RN

ϕ(v,0)f0(v)dv +
∫ t

0
dτ

∫
RN

∂ϕ(v, τ )

∂τ
f (v, τ )dv

− 1

4

∫ t

0
dτ

∫
RN

Q(f |�ϕ)(v, τ )dv, t ≥ 0. (1.13)

The existence of weak solutions has been proven respectively by Arkeryd [2] for −1 ≤
γ < 0, Goudon [15] for −2 ≤ γ < 0, and Villani [25] for −4 < γ < 0. In Proposition 1.2
below we summarize these results, with one improvement: We also treat the case γ = −4.

Proposition 1.2 Let B(z,σ ) satisfy (1.6). Then for any 0 ≤ f0 ∈ L1
2 ∩L1 logL(RN), the (B)

has a weak solution f satisfying f |t=0 = f0.

We shall provide a proof of Proposition 1.2 in Sect. 3 below. Despite the fact that apart
from the case γ = −4, a proof can be found in the references cited above, there are motiva-
tions for presenting the details here.

First, the only paper covering the range −4 < γ < −2 is Villani’s [25], and he bases his
analysis on the relation between the Boltzmann equation and the Landau equation. In fact, he
gives a complete proof for the case of the Landau equation for −4 < γ < 0, and then simply
discusses the main ideas of proof for the Boltzmann equation. While the discussion is quite
clear, and while there are good physical reasons for making a connection with the Landau
equation, it is possible to proceed somewhat more directly for the Boltzmann equation, as we
do here: Our proof is direct, relatively short, complete and covers the case γ = −4. (In [25],
the hypothesis −4 < γ , was used two times for Landau equation, and hence needed for
Boltzmann equation.)

A second reason for presenting a proof here is that to go beyond γ = −2, one must use
entropy production estimates. We shall use simple entropy production arguments systemati-
cally throughout the paper, not only to construct weak solutions. But using them to construct
weak solutions for very soft potentials provides an excellent topic with which to introduce
them.

Finally, various approximation procedures that are used in the proof of existence are also
used in our study of convergence to equilibrium, and for this reason it is quite useful to have
them included explicitly in this paper.

1.3 The Main Results

By changing scales one can assume without loss of generality that initial data have unit
mass, zero momentum and unit temperature, i.e.

f0 ∈ L1
(1,0,1)(R

N) :=
{

0 ≤ f ∈ L1
2(R

N)

∣∣∣
∫

RN

(
1, v,

1

N
|v|2

)
f (v)dv = (1,0,1)

}
.
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The Maxwellian in L1
(1,0,1)(R

N) is given by

M(v) = (2π)−N/2 exp(−|v|2/2), v ∈ RN . (1.14)

To study L1-convergence to equilibrium, we shall use a property that the L1-distances ‖f −
M‖L1 and ‖f − M‖L1

2
are almost equivalent [7]: There is an explicit constant 0 < CN < ∞

depending only on N , such that

‖f − M‖L1
2
≤ CN‖f − M‖L1 log

(
6

‖f − M‖L1

)
, ∀f ∈ L1

(1,0,1)(R
N).

This implies that (with a different CN < ∞)

‖f − M‖L1 ≤ ‖f − M‖L1
2
≤ CN

√‖f − M‖L1 , ∀f ∈ L1
(1,0,1)(R

N). (1.15)

Our main results are Theorems 1–3 below; their proofs will be given in latter sections.

Theorem 1 Let B(z,σ ) satisfy (1.6) and (1.7). For any initial datum f0 ∈ L1
(1,0,1) ∩ L1

s ∩
L1 logL(RN) with s > 2, let f (v, t) be a weak solution of (B) with f |t=0 = f0. Then

(I) (Moment estimates)

‖f (t)‖L1
s
≤ Cs(1 + t),

1

t

∫ t

0
‖f (τ)‖L1

s+γ
dτ ≤ Cs, ∀ t > 0 (1.16)

where the constant 0 < Cs < ∞ depends only on N,γ,A∗,A∗, s and ‖f0‖L1
s
, and in

case −4 ≤ γ < −2, Cs depends also on H(f0).
(II) (Time averaged convergence) If s > 2 + |γ |, then

lim
T →∞

1

T

∫ T

0
‖f (t) − M‖L1

2
dt = 0 (1.17)

where M ∈ L1
(1,0,1)(R

N) is the Maxwellian (1.14).

Remarks (1) The moment estimates in (1.16) were first established by Desvillettes [12]
under the Grad angular cut-off on B with −1 < γ < 0. Villani [25] then proved (1.16) under
the finite momentum transfer condition (1.6)–(1.7) for −4 < γ < 0 and s ≤ 4, and in [27]
he concluded further that ∀ s > 2,∃λs > 0 such that ‖f (t)‖L1

s
≤ Cs(1 + t)λs . Here we prove

that λs ≡ 1 for all s > 2 (thanks to the integrability
∫ ∞

0 D(f (t))dt < ∞).
(2) Theorem 1 provides the first convergence results for weak solutions for very soft

potentials without any cut-off, assuming only the physically natural finite momentum trans-
fer condition (1.6). For the usual L1 convergence, it has been proven in [13] and [24] that
‖f (t) − M‖L1 ≤ C(1 + t)−λ (λ > 0) only under quite strong cut-off assumptions for soft
potentials; e.g., that z �→ B(z,σ ) is bounded near z = 0.

Our next results concern lower and upper bounds of convergence rate to equilibrium for
certain classes of solutions of (B). We show that a general lower bound can be obtained for
such initial data f0 ∈ L1

(1,0,1) ∩ L1
s ∩ L1 logL(RN) that have energy long-tails:

lim sup
R→∞

Rβ

∫
|v|>R

|v|2f0(v)dv = ∞ (1.18)



690 E.A. Carlen et al.

where β = min{s, s − 2 +|γ |} for s ≥ 2,−4 ≤ γ < 0. Note that the condition (1.18) implies
that for any constant K > 0, the equation

(R(t))β

∫
|v|>R(t)

|v|2f0(v)dv = K(1 + t)2−[2/s], t ∈ [0,∞) (1.19)

has a minimal solution R(t) > 0. Here [x] denotes the largest integer not exceeding x.

Theorem 2 Let B(z,σ ) satisfy (1.6) and (1.7). Let f0 ∈ L1
(1,0,1) ∩L1

s ∩L1 logL(RN) satisfy
(1.18) for some s ≥ 2, and let f (v, t) be a weak solution of (B) with initial datum f |t=0 = f0.
Then

(I) For any constant K0 ∈ (0,∞) there exists K ∈ [K0,∞) which depends only on
N,γ,A∗,A∗, s,‖f0‖L1

s
,H(f0) and K0 such that for the minimal solution R(t) of (1.19)

we have

‖f (t) − M‖L1
2
≥

∫
|v|>R(t)

|v|2f0(v)dv, ∀ t ≥ 0. (1.20)

As a consequence we have the following explicit lower bounds:
(II) Suppose s > 2, β = min{s, s − 2 + |γ |}, and there are constants s − 2 < δ < β and

0 < ε0,R0 < ∞ such that

f0(v) ≥ ε0〈v〉−(N+2+δ) (1.21)

for all |v| ≥ R0. Then there is a computable constant C > 0 such that

‖f (t) − M‖L1
2
≥ C (1 + t)−λ, ∀ t ≥ 0 (1.22)

where λ = 2δ/(β − δ).

(III) Suppose s = 2, β = min{2, |γ |}. Let A ∈ C1
b ([0,∞)) satisfy

lim
t→∞A(t) = 0, inf

t≥0
(1 + t)δA(t) > 0,

A1(t) := − d

dt
A(t) ≥ 0 on [0,∞)

(1.23)

where 0 < δ < β . Suppose for some 0 < ε0,R0 < ∞
f0(v) ≥ ε0|v|−(N+1)A1(|v|), ∀ |v| ≥ R0. (1.24)

Then there are constants 0 < c,C < ∞ such that

‖f (t) − M‖L1
2
≥ CA(c tα), ∀ t ≥ 0 (1.25)

where α = 1/(β − δ).

There are many initial data f0 that satisfy all conditions in Theorem 2. For example, in
the case s = 2, one can choose

A(t) = (1 + t)−δ, [1 + log(1 + t)]−1, [1 + log(1 + log(1 + t))]−1, . . .

which means that the rate of convergence to equilibrium can be arbitrarily slow for s = 2.
This fact has been observed in [7] for Maxwellian molecules (γ = 0) with angular cutoff.
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Note also that for any initial datum f0 ∈ L1
(1,0,1)(R

N), the mass tail of f0 always decays at
least with algebraic order 2,

∫
|v|>R

f0(v)dv ≤ NR−2, but the energy tail
∫

|v|>R
|v|2f0(v)dv

may decay very slowly. This is why we consider the energy tail (hence L1
2 norm) rather than

the mass tail.
We now turn to upper bounds on the rate of convergence. Here, we must impose more

restrictive conditions on the collision kernel: We assume that B(z,σ ) satisfies the following
cutoff conditions (with constant K∗ > 0):

K∗(1 + |z|2)γ/2 ≤ B(z,σ ) ≤ b(cos θ)|z|γ , −1 ≤ γ < 0, (1.26)

A0 := |SN−2|
∫ π

0
b(cos θ) sinN−2 θ dθ < ∞. (1.27)

Theorem 3 Let B(z,σ ), γ satisfy (1.26)–(1.27) and let f0 ∈ L1
(1,0,1) ∩ L1

s logL1(RN) with
s > 10. Then there exist a finite constant C and a weak solution f (v, t) of (B) with f |t=0 =
f0 such that

‖f (t) − M‖L1
2
≤ C (1 + t)−λ, t ≥ 0 (1.28)

where

λ = s − 10

12
> 0. (1.29)

Remark In this theorem we do not assume that f0 has any strictly positive pointwise lower
bounds, nor shall we make use of any pointwise lower bounds on the weak solutions.

In Theorem 3, if the initial datum satisfies (1.21), then the corresponding solution f

satisfies both (1.22) and (1.28), i.e., the convergence rate to equilibrium satisfies both upper
and lower bounds that are only algebraic:

C1(1 + t)−λ1 ≤ ‖f (t) − M‖L1
2
≤ C (1 + t)−λ, t ≥ 0.

One of the main tools we use to prove Theorem 3 is an entropy production bound of
Villani [28] for super hard potentials; i.e., γ = +2. As Villani showed in [28], for super
hard potentials, there is an especially nice inequality relating the entropy production and the
relative entropy. And moreover, while super hard potentials are themselves non-physical,
one can use the super hard entropy production bound to obtain entropy production bounds
for physically interesting hard potentials, using moment bounds and pointwise lower bounds
on the solutions.

Our Theorem 1 provides moment bounds for soft potentials that are good enough to pro-
ceed with an adaptation of this part of Villani’s argument to soft potentials, but the pointwise
lower bounds are more problematic in this setting.

The pointwise lower bounds enter Villani’s argument as follows: To estimate the entropy
production D(f ) for γ < 2 in terms of D2(f ), the entropy production for γ = 2, a simple
Hölder argument explained in Sect. 7 leads to the consideration of the quantity

Dk(f ) = 1

4

∫
RN ×RN ×SN−1

(1 + |v − v∗|2)k/2(f ′f ′
∗ − ff∗) log

(
f ′f ′∗
ff∗

)
dσdvdv∗

for k > 2. It is easy to see that Dk(f ) can be estimated in terms of L1 bounds on
〈v〉kf (v) logf (v), and clearly the negative part of this function is integrable if f satisfies
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a bound of the type f (v) ≥ Ce−c|v|p and f has moments of sufficiently high orders. The
details are somewhat more complicated than indicated in this sketch, but the sketch should
nonetheless give a fair indication of the interplay between moment bounds and pointwise
lower bounds in Villani’s arguments. While suitable pointwise lower bounds are available
for the hard potentials that Villani considers, they are not available for soft potentials, at
least not for the sort of general initial data that we wish to consider.

A novel element in our proof of Theorem 3 is a strategy for avoiding any pointwise
bounds which is explained in Sect. 7. Given a solution f (v, t) of (B), we define the function
g(v, t) by

g(v, t) = (1 − e−t−1)f (v, t) + e−t−1M(v).

Evidently, g(v, t) has good pointwise lower bounds by construction. Although g is not itself
a solution to (B), it is closely related enough to one, namely f , that we shall use Villani’s
entropy production inequality for super hard potentials to prove and an entropy production
inequality relating D(g) and H(g|M) and show that H(g|M) tends to zero at any polyno-
mial rate provided the initial datum f0 has sufficiently many moments.

The most technically involved part of the proof is the demonstration that the L1 norm
of 〈v〉kg(v, t) logg(v, t) is bounded by a constant multiple of (1 + t)2, again, provided the
initial data has sufficiently many moments. This approach to proving and using such entropic
moment estimates is one of the more novel features of this paper, and may well have other
applications. The condition γ ≥ −1 is used in this part of the proof of Theorem 3.

We thank the referee of this paper who encouraged us to work harder on the proof of
Theorem 3, and relax the stronger conditions on the initial data that we had imposed in a
previous version, and we thank this referee for his many other useful remarks and sugges-
tions as well.

2 Basic Lemmas Concerning Collision Integrals

In this section we collect some lemmas that will be used to ensure integrability of certain
collision integrals, as well as to estimate others in terms of entropy dissipation.

There are nothing fundamentally new in this section except some quantitative improve-
ments and mild generalizations of some lemmas that can be found in previous works by
Goudon [13] and Villani [21], and references they cite.

The first lemma justifies the definition of L[�ϕ](v, v∗) that figures in our definition of
weak solutions. We begin with a more complete explanation of the notation used in the
definition of L[�ϕ](v, v∗) that we have given in the introduction.

Let

k = v − v∗
|v − v∗| if v 
= v∗; k = e1 = (1,0, . . . ,0) if v = v∗.

Under the spherical coordinate transform σ = cos θ k + sin θ ω, θ ∈ [0,π],ω ∈ SN−2(k) we
have

{
v′ = cos2(θ/2)v + sin2(θ/2)v∗ + 1

2 |v − v∗| sin θ ω,

v′∗ = sin2(θ/2)v + cos2(θ/2)v∗ − 1
2 |v − v∗| sin θ ω,

ω ∈ SN−2(k) (2.1)

|v′ − v| = |v′
∗ − v∗| = |v − v∗| sin(θ/2),

|v′ − v∗| = |v′
∗ − v| = |v − v∗| cos(θ/2).

(2.2)
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Here

SN−2(k) = {ω ∈ SN−1|〈ω,k〉 = 0} (N ≥ 3);
S0(k) = {−k⊥,k⊥} (N = 2)

where k⊥ ∈ S1 satisfies 〈k⊥,k〉 = 0. Also, for any F ∈ L1(SN−1) or any measurable function
F ≥ 0 on SN−1, we have

∫
SN−1

F(σ)dσ =
∫ π

0
sinN−2 θ

(∫
SN−2(k)

F (cos θk + sin θ ω)dω

)
dθ

and in case N = 2 we define∫
S0(k)

g(ω)dω = g(−k⊥) + g(k⊥).

Let |SN−2(k)| = ∫
SN−2(k)

dω, etc. Then |SN−2(k)| = |SN−2| for N ≥ 3, |S0(k)| = |S0| = 2
for N = 2.

Lemma 2.1 Let ϕ ∈ C2(RN),�ϕ = ϕ(v′) + ϕ(v′∗) − ϕ(v) − ϕ(v∗). Then for all σ ∈ SN−1,
v, v∗ ∈ RN

|�ϕ| ≤ 2(4−3m)/2

(
sup

|u|≤
√

|v|2+|v∗|2
|∂mϕ(u)|

)
|v − v∗|m sin θ, m = 1,2; (2.3)

1

|SN−2|
∣∣∣∣
∫

SN−2(k)

�ϕ dω

∣∣∣∣ ≤
(

sup
|u|≤

√
|v|2+|v∗|2

|∂2ϕ(u)|
)

|v − v∗|2 sin2 θ. (2.4)

Proof Observing that −σ = cos(π − θ)k + sin(π − θ)(−ω) and �ϕ is invariant under the
reflection σ → −σ , we can assume without loss of generality that θ ∈ [0,π/2]. In this case
we have sin(θ/2) ≤ (sin θ)/

√
2.

By writing �ϕ = (ϕ′ − ϕ) + (ϕ′∗ − ϕ∗) one sees that (2.3) for m = 1 follows from the
first equality in (2.2). Next writing �ϕ = (ϕ′ − ϕ) − (ϕ∗ − ϕ′∗) and using v∗ − v′∗ = v′ − v,
we compute

�ϕ =
∫ 1

0
〈∂ϕ(v + t (v′ − v)) − ∂ϕ(v′

∗ + t (v′ − v)), v′ − v〉dt

=
∫ 1

0

∫ 1

0
(v − v′

∗)∂
2ϕ(ξt,τ )(v

′ − v)T dτdt

with |ξt,τ | ≤ max{|v|, |v′|, |v∗|, |v′∗|} ≤ √|v|2 + |v∗|2. Since |v′∗ − v||v′ − v| =
1
2 |v−v∗|2 sin θ , this gives (2.3) for m = 2. To prove (2.4) we write �ϕ = (ϕ′ −ϕ)+(ϕ′∗ −ϕ∗)
and use v′∗ − v∗ = −(v′ − v). Then

�ϕ = 〈∂ϕ(v) − ∂ϕ(v∗), v′ − v〉

+
∫ 1

0
(1 − t)(v′ − v)∂2ϕ(v + t (v′ − v))(v′ − v)T dt

+
∫ 1

0
(1 − t)(v′

∗ − v∗)∂2ϕ(v∗ + t (v′
∗ − v∗))(v′

∗ − v∗)T dt.
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Since by (2.1)

1

|SN−2|
∫

SN−2(k)

〈∂ϕ(v) − ∂ϕ(v∗), v′ − v〉dω = 〈∂ϕ(v) − ∂ϕ(v∗), v∗ − v〉 sin2(θ/2)

where we used
∫

SN−2(k)
〈∂ϕ(v) − ∂ϕ(v∗),ω〉dω = 0, it follows that

1

|SN−2|
∣∣∣∣
∫

SN−2(k)

�ϕ dω

∣∣∣∣ ≤ 2

(
sup

|u|≤
√

|v|2+|v∗|2
|∂2ϕ(u)|

)
|v − v∗|2 sin2(θ/2).

�

Our next lemma provides bounds on certain collision integrals in terms of entropy dis-
sipation. As in the case of the local Sobolev bounds on the collision kernel first proved
by Lions [18], and then extended in subsequent work [1, 26], the proof of our bounds de-
pends on the pointwise inequality (2.10) below. However, as our bounds do not involve local
Sobolev norms, the proof is somewhat simpler.

Lemma 2.2 Let B = B(v − v∗, σ ) satisfy (1.6), 0 ≤ f ∈ L1
2(R

N) satisfy D(f ) < ∞. Then:

(I) For any nonnegative measurable function � on RN × RN satisfying

�(v′, v′
∗) = �(v, v∗), ∀ (v, v∗, σ ) ∈ RN × RN × SN−1

we have
∫

RN ×RN ×SN−1
B�(v, v∗) sin θ |f ′f ′

∗ − ff∗|dσdv∗dv

≤
(

4A∗
∫

RN ×RN

[�(v, v∗)]2|v − v∗|γ ff∗dv∗dv

)1/2 √
D(f ) (2.5)

where A∗ is the constant in (1.6).
(II) Let m ∈ {1,2} be such that 0 ≤ 2m + γ ≤ 2. Then

∫
RN ×RN ×SN−1

B|v − v∗|m sin θ |f ′f ′
∗ − ff∗|dσdv∗dv ≤ √

4A∗‖f ‖L1
2

√
D(f ) (2.6)

and consequently for all ϕ ∈ C2
b (R

N)

∫
RN ×RN ×SN−1

B|�ϕ||f ′f ′
∗ − ff∗|dσdv∗dv ≤ √

8A∗‖∂mϕ‖L∞‖f ‖L1
2

√
D(f ). (2.7)

(III) For all ϕ ∈ T , if −4 ≤ γ < −2, then
∫

RN ×RN ×SN−1
B|�ϕ||f ′f ′

∗ − ff∗|dσdv∗dv ≤ √
A∗‖∂2ϕ‖L∞‖f ‖L1

2

√
D(f ) (2.8)

and if −2 ≤ γ < 0, then

∫
RN ×RN

∫ π

0
B(|v − v∗|, cos θ) sinN−2 θ

∣∣∣∣
∫

SN−2(k)

�ϕ dω

∣∣∣∣dθ ff∗dv∗dv

≤ A∗‖∂2ϕ‖L∞‖f ‖2
L1

2
. (2.9)
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Proof Applying the elementary inequality

|a − b| ≤ (
√

a + √
b)

√
1

4
(a − b) log

(
a

b

)
, a, b ≥ 0 (2.10)

to a = f ′f ′∗, b = ff∗ and using Cauchy-Schwarz inequality we have

∫
RN ×RN ×SN−1

B �(v, v∗) sin θ |f ′f ′
∗ − ff∗|dσdv∗dv

≤
(

4
∫

RN ×RN

(∫
SN−1

B sin2 θ dσ

)
[�(v, v∗)]2ff∗ dv∗dv

)1/2 √
D(f )

which gives (2.5) by condition (1.6). The condition 0 ≤ 2m + γ ≤ 2 implies |v − v∗|2m+γ ≤
〈v〉2〈v∗〉2. So applying (2.5) to �(v, v∗) = |v−v∗|m gives (2.6). The inequality (2.7) follows
from (2.3), (2.4) and (2.6). The inequality (2.8) follows from (2.3) and (2.6) with m = 2.
Finally from (2.4) and |SN−2| ∫ π

0 B(|v − v∗|, cos θ) sinN θdθ ≤ A∗ we have

∫ π

0
B(|v − v∗|, cos θ) sinN−2 θ

∣∣∣∣
∫

SN−2(k)

�ϕ dω

∣∣∣∣dθ ≤ ‖∂2ϕ‖L∞A∗|v − v∗|2+γ

and |v − v∗|2+γ ≤ 〈v〉2〈v∗〉2 when −2 ≤ γ < 0. This gives (2.9). �

The last lemma in this section justifies the equalities resulting from formal calculation
that are cited just above the definition of weak solutions, at least for certain cutoff parts of
the collision integrals—which is just what we shall need in the next section.

Lemma 2.3 Suppose B(z,σ ) satisfies (1.6). For any λ > 0, let

Bλ(z, σ ) = 1{|z|≤λ}B(z,σ ), Bλ(z, σ ) = 1{|z|>λ}B(z,σ ) (2.11)

and let Q(·),Qλ(·),Lλ[·] be the operators corresponding to the kernels B(z,σ ),Bλ(z, σ )

and Bλ(z, σ ) respectively. Then for all 0 ≤ f ∈ L1
2(R

N) satisfying D(f ) < ∞ we have

(I) If −4 ≤ γ < −2 then for any ϕ ∈ T and any λ > 0

∫
RN

Q(f |�ϕ)(v)dv =
∫

RN

Qλ(f |�ϕ)(v)dv − 2
∫

RN ×RN

Lλ[�ϕ]ff∗dv∗dv. (2.12)

(II) If −2 ≤ γ < 0 then for all ϕ ∈ C2
b (R

N)

∫
RN

Q(f |�ϕ)(v)dv = −2
∫

RN ×RN

L[�ϕ]ff∗dv∗dv. (2.13)

Proof (I) Suppose −4 ≤ γ < −2. Given ϕ ∈ T . By Lemma 2.1 we have |�ϕ(v′, v′∗, v, v∗)| ≤
‖∂2ϕ‖L∞|v − v∗|2 sin θ . So applying (2.6) with m = 2 gives

∫
RN ×RN ×SN−1

B(v − v∗, σ )|�ϕ||f ′f ′
∗ − ff∗|dσdv∗dv < ∞ (2.14)
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and thus∫
RN

Q(f |�ϕ)(v)dv =
∫

RN

Qλ(f |�ϕ)(v)dv +
∫

RN

Qλ(f |�ϕ)(v)dv (2.15)

with Qλ(·),Qλ(·) corresponding to Bλ(z, σ ) and Bλ(z, σ ). Introduce further truncation

Bλ,ε(v − v∗, σ ) = 1{sin θ>ε}Bλ(v − v∗, σ ), ε > 0

and let Qλ,ε(·),Lλ,ε[·] correspond to Bλ,ε(z, σ ). Then using (2.14) and dominated conver-
gence we have

∫
RN

Qλ(f |�ϕ)(v)dv = lim
ε→0+

∫
RN

Qλ,ε(f |�ϕ)(v)dv. (2.16)

By Lemma 2.1 and Bλ,ε ≤ 1
ε
Bλ sin θ we have

Bλ,ε(v − v∗, σ )|�ϕ| ≤ ‖∂2ϕ‖L∞

2ε
|v − v∗|21{|v−v∗|>λ}B(v − v∗, σ ) sin2 θ.

Since |v − v∗|2+γ 1{|v−v∗|>λ} ≤ λ2+γ , it follows that
∫

RN ×RN ×SN−1
Bλ,ε|�ϕ|ff∗dσdv∗dv ≤ A∗

2ε
‖∂2ϕ‖L∞λ2+γ ‖f ‖2

L1 < ∞.

This allows us to use the standard derivation and obtain∫
RN

Qλ,ε(f |�ϕ)(v)dv = −2
∫

RN ×RN

Lλ,ε[�ϕ]ff∗dv∗dv. (2.17)

Also by Lemma 2.1

|Lλ[�ϕ](v, v∗)|, sup
ε>0

|Lλ,ε[�ϕ](v, v∗)|

≤
∫ π

0
Bλ(|v − v∗|, cos θ) sinN−2 θ

∣∣∣∣
∫

SN−2(k)

�ϕ dω

∣∣∣∣dθ ≤ A∗‖∂2ϕ‖L∞λ2+γ .

Therefore using dominated convergence gives

lim
ε→0+

∫
RN ×RN

Lλ,ε[�ϕ]ff∗dv∗dv =
∫

RN ×RN

Lλ[�ϕ]ff∗dv∗dv.

This together with (2.15), (2.16) and (2.17) proves (2.12).
(II) Suppose −2 ≤ γ < 0. Consider Bε(z, σ ) = 1{sin θ>ε}B(z,σ ) and let Qε(·),Lε[·] cor-

respond to Bε(z, σ ). For any ϕ ∈ C2
b (R

N) we have, by Lemma 2.2 (use (2.7) with m = 1)
and dominated convergence, that

∫
RN

Q(f |�ϕ)(v)dv = lim
ε→0+

∫
RN

Qε(f |�ϕ)(v)dv. (2.18)

As shown above using Bε ≤ 1
ε
B sin θ and |v − v∗|2+γ ≤ 〈v〉2〈v∗〉2 we have

∫
RN ×RN ×SN−1

Bε|�ϕ|ff∗dσdv∗dv < ∞
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hence ∫
RN

Qε(f |�ϕ)(v)dv = −2
∫

RN ×RN

Lε[�ϕ](v, v∗)ff∗dv∗dv. (2.19)

Since 0 ≤ Bε ≤ B and Bε → B(ε → 0) pointwise, it follows from (2.9) and dominated
convergence that

lim
ε→0

∫
RN ×RN

Lε[�ϕ]ff∗dv∗dv =
∫

RN ×RN

L[�ϕ]ff∗dv∗dv.

This together with (2.18) and (2.19) proves (2.13). �

3 Construction of Weak Solutions, and the Equivalence of Two Definitions of Weak
Solutions

In this section we prove Propositions 1.1 (equivalence) and 1.2 (existence).

Proof of Proposition 1.1 First, “(a) =⇒ (b)” is a consequence of C2
b (R

N) ⊂ T and part (II)
of Lemma 2.3. To prove “(b) =⇒ (a)”, we consider approximation. Let χ ∈ C∞

c (RN) satisfy

0 ≤ χ ≤ 1 on RN, χ(v) = 1, ∀ |v| ≤ 1; χ(v) = 0, ∀ |v| > 2. (3.1)

Given any ϕ ∈ T . Let ϕn(v) = ϕ(v)χ(v/n), n ≥ 1. It is easily seen that {ϕn} ⊂ C2
b (R

N) and

sup
n≥1

sup
v∈RN

(〈v〉−2|ϕn(v)| + 〈v〉−1|∂ϕn(v)| + |∂2ϕn(v)|) < ∞.

Since |ϕn(v)| ≤ |ϕ(v)| and ϕn(v) → ϕ(v), ∀v ∈ RN , it follows that
∫

RN

ϕ(v)f (v, t)dv =
∫

RN

ϕ(v)f0(v)dv − 1

4
lim

n→∞

∫ t

0
dτ

∫
RN

Q(f |�ϕn)(v, τ )dv, t ≥ 0.

Assume −4 ≤ γ < −2. Since

�ϕn → �ϕ (n → ∞), ∀ (v, v∗, σ ) ∈ RN × RN × SN−1

and supn≥1 |�ϕn| ≤ Cϕ|v −v∗|2 sin θ , it follows from part (III) of Lemma 2.2 and dominated
convergence that

lim
n→∞

∫ t

0
dτ

∫
RN

Q(f |�ϕn)(v, τ )dv =
∫ t

0
dτ

∫
RN

Q(f |�ϕ)(v, τ )dv.

Next assume −2 ≤ γ < 0. By part (II) of Lemma 2.3 we have

−
∫ t

0
dτ

∫
RN

Q(f |�ϕn)(v, τ )dv = 2
∫ t

0
dτ

∫
RN ×RN

L[�ϕn]ff∗dv∗dv.

Since limn→∞ L[�ϕn](v, v∗) = L[�ϕ](v, v∗) and

|L[�ϕ](v, v∗)|, sup
n≥1

L[�ϕn](v, v∗)| ≤ Cϕ|v − v∗|2+γ ≤ Cϕ〈v〉2+γ 〈v∗〉2+γ

it follows from dominated convergence that
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− lim
n→∞

∫ t

0
dτ

∫
RN

Q(f |�ϕn)dv = 2
∫ t

0
dτ

∫
RN ×RN

L[�ϕ]ff∗dv∗dv.

Therefore f is a weak solution.
Now we are going to prove “(b) ⇐⇒ (c)”. “(b) ⇐= (c)” is trivial. To prove “(b) =⇒ (c)”

we denote for notation convenience that

Q(f |�ϕ(s, ·))(v, τ ) = Q(f (τ)|�ϕ(s))(v),

∫
RN

g(t)dv =
∫

RN

g(v, t)dv.

Given any ϕ ∈ C1
b (R

N × [0,∞)) ∩ L∞([0,∞);C2
b (R

N)). By Lemmas 2.1 and 2.2 there is
m ∈ {1,2} such that

|�ϕ(v′, v′
∗v, v∗, t)| ≤ Cϕ |v − v∗|m sin θ, (3.2)

∫ t2

t1

ds

∫
RN ×RN ×SN−1

B|v − v∗|m sin θ |f ′f ′
∗ − ff∗|dσdv∗dv ≤ Cf

∫ t2

t1

√
D(f (s)) ds (3.3)

for all 0 ≤ t1 < t2 < ∞, where Cϕ = 2 supt≥0 ‖∂m
v ϕ(·, t)‖L∞ , Cf = √

4A∗ supt≥0 ‖f (t)‖L1
2
.

Applying (1.11) to the test function v �→ ϕ(v, t2) we obtain

∫
RN

ϕ(t2)f (t2)dv =
∫

RN

ϕ(t2)f (t1)dv − 1

4

∫ t2

t1

dτ

∫
RN

Q(f (τ)|�ϕ(t2))dv.

This gives
∫

RN

ϕ(t2)f (t2)dv −
∫

RN

ϕ(t1)f (t1)dv

=
∫

RN

(ϕ(t2) − ϕ(t1)) f (t1)dv − 1

4

∫ t2

t1

dτ

∫
RN

Q(f (τ)|�ϕ(t2))dv

which implies by (3.2) and (3.3) that t �→ ∫
RN ϕ(t)f (t)dv is continuous on [0,∞). Choose

t1 = s, t2 = s + h,0 < h < 1. Taking integration with respect to s ∈ [0, t] and changing
variables we compute

1

h

∫ t+h

t

∫
RN

ϕ(s)f (s)dvds − 1

h

∫ h

0

∫
RN

ϕ(s)f (s)dvds

=
∫ t

0
ds

∫
RN

1

h
(ϕ(s + h) − ϕ(s)) f (s)dv − 1

4
I (t, h),

I (t, h) :=
∫ 1

0
dτ

∫ t

0
ds

∫
RN

Q(f (s + τh)|�ϕ(s + h))dv

=
∫ 1

0
dτ

∫ t+1

0
ds

∫
RN

1{τh≤s≤t+τh}Q(f (s)|�ϕ(s + (1 − τ)h))dv.

Since

1{τh≤s≤t+τh}�ϕ(v′, v′
∗v, v∗, s + (1 − τ)h) → 1{0≤s≤t}�ϕ(v′, v′

∗v, v∗, s) (h → 0)

for almost every (v, v∗, σ, s, τ ) ∈ RN × RN × SN−1 × [0, t + 1] × [0,1], it follows from
(3.2), (3.3) and dominated convergence that
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I (t, h) →
∫ t

0
ds

∫
RN

Q(f (s)|�ϕ(s))dv (h → 0).

Therefore
∫

RN

ϕ(t)f (t)dv −
∫

RN

ϕ(0)f0dv

=
∫ t

0
ds

∫
RN

(∂sϕ(s))f (s)dv − 1

4

∫ t

0
ds

∫
RN

Q(f (s)|�ϕ(s))dv

for all t ∈ (0,∞). Hence, f satisfies (1.13). �

Proof of Proposition 1.2 As usual, we shall use approximate solutions. For every n ∈ N, let
Bn = min{B,n} and let Qn(·),Dn(·) and Ln[·] correspond to the kernel Bn. It is well-known
that for every n there is a unique strong (or mild) solution f n(v, t) of (B) with the kernel Bn

and the initial datum f n|t=0 = f0. And f n(v, t) conserves the mass, momentum, and energy
and satisfies the entropy inequality

H(f n(t)) +
∫ t

0
Dn(f

n(τ ))dτ ≤ H(f0), t ≥ 0. (3.4)

These imply supn≥1,t≥0

∫
RN f n(v, t)(〈v〉2 + | logf n(v, t)|)dv < ∞.

Since f n are also weak solutions, they satisfy (1.11) which together with (2.7) and (3.4)
imply that for all ϕ ∈ C2

b (R
N) and all |t1 − t2| ≤ 1

sup
n≥1

∣∣∣∣
∫

RN

ϕ(v)f n(v, t1)dv −
∫

RN

ϕ(v)f n(v, t2)dv

∣∣∣∣ ≤ C‖∂2ϕ‖L∞|t1 − t2|1/2. (3.5)

Here C depends only on A∗,‖f0‖L1
2

and H(f0). From this we have for any ψ ∈ L∞(RN)

sup
|t1−t2|≤δ

sup
n≥1

∣∣∣∣
∫

RN

ψ(v)f n(v, t1)dv −
∫

RN

ψ(v)f n(v, t2)dv

∣∣∣∣ → 0 as δ → 0 + .

By a standard argument, there exist a subsequence of {f n} (still denoted by {f n}), and a
(v, t)-measurable function 0 ≤ f ∈ L∞([0,∞);L1

2 ∩ L1 logL(RN)) such that

∀ t ≥ 0, f n(·, t) ⇀ f (·, t) weakly in L1(RN). (3.6)

Hence, by convexity and Fatou’s Lemma, we conclude from (3.4) that f satisfies the entropy
inequality (1.10). (The details of such an argument may be found in [14].) Thus, to prove
that f is a weak solution, it only needs to show that for any ϕ ∈ C2

b (R
N), t ∈ [0,∞),

lim
n→∞

∫ t

0
dτ

∫
RN

Qn(f
n|�ϕ)dv =

∫ t

0
dτ

∫
RN

Q(f |�ϕ)dv. (3.7)

To do this, we use the following property (which is a consequence of weak convergence
(3.6) and supn≥1,t≥0 ‖f n(t)‖L1

2
< ∞): If for some α < 2, �(v, v∗) and �n(v, v∗) satisfy

|�(v, v∗)|, sup
n≥1

|�n(v, v∗)| ≤ C〈v〉α〈v∗〉α,

�n(v, v∗) → �(v, v∗) (n → ∞) a.e. (v, v∗) ∈ RN × RN
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then

lim
n→∞

∫ t

0
dτ

∫
RN ×RN

�nf
nf n

∗ dv∗dv =
∫ t

0
dτ

∫
RN ×RN

�ff∗dv∗dv. (3.8)

Suppose −2 ≤ γ < 0. Then

|L[�ϕ](v, v∗)|, sup
n≥1

|Ln[�ϕ](v, v∗)| ≤ Cϕ〈v〉2+γ 〈v∗〉2+γ ,

so applying the relation (2.13) in Lemma 2.3, we see that the convergence (3.7) follows from
(3.8) with �(v, v∗) = L[�ϕ](v, v∗) and �n(v, v∗) = Ln[�ϕ](v, v∗).

Next, for −4 ≤ γ < −2, we truncate: For any λ > 0, let Bn,λ = 1{|v−v∗|>λ}Bn,Bλ =
1{|v−v∗|>λ}B and let Qn,λ(·),Ln,λ[·] and Qλ(·),Lλ[·] correspond to Bn,λ and Bλ respectively.
Then

∫ t

0
dτ

∫
RN

Qn(f
n|�ϕ)dv −

∫ t

0
dτ

∫
RN

Q(f |�ϕ)dv

=
∫ t

0
dτ

∫
RN

Qn(f
n|�ϕ)dv −

∫ t

0
dτ

∫
RN

Qn,λ(f
n|�ϕ)dv

+
∫ t

0
dτ

∫
RN

Qn,λ(f
n|�ϕ)dv −

∫ t

0
dτ

∫
RN

Qλ(f |�ϕ)dv

+
∫ t

0
dτ

∫
RN

Qλ(f |�ϕ)dv −
∫ t

0
dτ

∫
RN

Q(f |�ϕ)dv

:= In,λ(t) + Jn,λ(t) + Iλ(t).

Using part (I) of Lemma 2.2 we have

|In,λ(t)| ≤ Cϕ

∫ t

0
dτ

∫
RN ×RN ×SN−1

B1{|v−v∗|≤λ}|v − v∗|2 sin θ |f n′
f n

∗
′ − f nf n

∗ |dσdv∗dv

≤ Cϕ

(∫ t

0
dτ

∫
RN ×RN

1{|v−v∗|≤λ}|v −v∗|4+γ f nf n
∗ dv∗dv

)1/2 (∫ t

0
Dn(f

n(τ ))dτ

)1/2

≤ Cϕ

(∫ t

0
dτ

∫
RN ×RN

1{|v−v∗|≤λ}f nf n
∗ dv∗dv

)1/2

.

By supn≥1,τ≥0

∫
RN f n(v, τ )| logf n(v, τ )|dv < ∞ we obtain for all 0 < λ < 1 < R

sup
n≥1,τ≥0

∫
RN

f n(v, τ )

(∫
|v−v∗|≤λ

f n(τ, v∗)dv∗
)

dv ≤ C

(
RλN + 1

logR

)
‖f0‖L1 .

This implies that supn≥1 |In,λ(t)| → 0 as λ → 0. Similarly Iλ(t) → 0 (λ → 0). To estimate
Jn,λ(t) we use (2.12) in Lemma 2.3 to get

|Jn,λ(t)| = 2

∣∣∣∣
∫ t

0
dτ

∫
RN ×RN

Ln,λ[�ϕ]f nf n
∗ dv∗dv −

∫ t

0
dτ

∫
RN ×RN

Lλ[�ϕ]ff∗dv∗dv

∣∣∣∣ .

Since Ln,λ[�ϕ](v, v∗) → Lλ[�ϕ](v, v∗) (n → ∞) for all (v, v∗) ∈ RN × RN and

|Lλ[�ϕ](v, v∗)|, sup
n≥1

|Ln,λ[�ϕ](v, v∗)| ≤ Cϕ1{|v−v∗|>λ}|v − v∗|2+γ ≤ Cϕ,λ
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it follows from (3.8) that Jn,λ(t) → 0 (n → ∞)∀λ > 0. These imply (3.7) for −4 ≤ γ < −2.
Therefore, f is a weak solution. �

4 Moment Estimates for Weak Solutions

In this section we prove the first part of Theorem 1; i.e., the moment estimates. We need
two lemmas that provide estimates of �ϕ for ϕ(v) = 〈v〉s . These are so-called Povzner
type estimates, but including averaging that allows them to be applied in our weak solution
setting.

For any v, v∗ ∈ RN let h = v+v∗
|v+v∗| for v+v∗ 
= 0 and h = e1 = (1,0, . . . ,0) for v+v∗ = 0;

k = v−v∗
|v−v∗| for v −v∗ 
= 0 and k = e1 for v −v∗ = 0. Then using representation (2.2) we have

with ω ∈ SN−2(k)

|v′|2 = |v|2 + |v∗|2
2

+ |v + v∗||v − v∗|
2

(
〈h,k〉 cos θ +

√
1 − 〈h,k〉2 sin θ〈j,ω〉

)
,

|v′
∗|2 = |v|2 + |v∗|2

2
− |v + v∗||v − v∗|

2

(
〈h,k〉 cos θ +

√
1 − 〈h,k〉2 sin θ〈j,ω〉

)

where j = h−〈h,k〉k√
1−〈h,k〉2

for |〈h,k〉| < 1 and j = e1 for |〈h,k〉| = 1.

To prove the moment estimates we need the following lemmas:

Lemma 4.1 For all s > 2 and v, v∗ ∈ RN

1

|SN−2|
∫

SN−2(k)

(〈v′〉s + 〈v′
∗〉s − 〈v〉s − 〈v∗〉s

)
dω

≤ s(s − 2)
(〈v〉2 + 〈v∗〉2

)(s−4)/2 |v + v∗|2|v − v∗|2
[
(1 − 〈h,k〉2)s̄/2 − 2−s/2−3

]
sin2 θ

where s̄ = min{s − 2,2}.

Proof Let

ρ = 1

2

(〈v〉2 + 〈v∗〉2
)
, r = |v + v∗||v − v∗|

〈v〉2 + 〈v∗〉2 ,

X = r〈h,k〉, Y = r
√

1 − 〈h,k〉2.

Then from the representation of |v′|2, |v′∗|2 we have

〈v′〉2 = ρ (1 + X cos θ + Y sin θ〈j,ω〉) , 〈v〉2 = ρ(1 + X),

〈v′
∗〉2 = ρ (1 − X cos θ − Y sin θ〈j,ω〉) , 〈v∗〉2 = ρ(1 − X)

and so

W(v,v∗, θ) := ρ−k

∫
SN−2(k)

(〈v′〉2k + 〈v′
∗〉2k − 〈v〉2k − 〈v∗〉2k

)
dω

=
∫

SN−2(k)

{ ∑
i=1,−1

(
1 + iX cos θ + iY sin θ〈j,ω〉)k −

∑
i=1,−1

(1 + iX)k

}
dω

(4.1)
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where k = s/2 > 1. To estimate the integrand {· · · } we shall use the following inequality:
For all a ∈ [−1,1] and t ∈ [−1,1]

(1 + at)k + (1 − at)k − (1 + a)k − (1 − a)k + k(k − 1)

2
a2(1 − t2) ≤ 0. (4.2)

This inequality is easily proven by checking that the left hand side is a convex function in
t ∈ [−1,1]. Applying (4.2) to a = X we have

∑
i=1,−1

(1 + iX cos θ)k −
∑

i=1,−1

(1 + iX)k ≤ −k(k − 1)

2
X2 sin2 θ (4.3)

from which we see that if Y =0 then the lemma holds true. Suppose Y 
=0. Then |〈h,k〉|<1.
By the Cauchy-Schwarz inequality and r = |v+v∗||v−v∗|

〈v〉2+〈v∗〉2 < 1, we have that for all t ∈ [0,1],

1−(|X| cos θ + t |Y | sin θ) > 1−
√

〈h,k〉2 + t2(1 − 〈h,k〉2) ≥ 1

2
(1−〈h,k〉2)(1− t2). (4.4)

Applying Taylor’s formula to the function

t �→
∑

i=1,−1

(1 + iX cos θ + t i Y sin θ〈j,ω〉))k −
∑

i=1,−1

(1 + iX)k , t ∈ [0,1],

we compute

{· · · } =
∑

i=1,−1

(1 + iX cos θ)k −
∑

i=1,−1

(1 + iX)k

+ k
∑

i=1,−1

(1 + iX cos θ)k−1 iY sin θ〈j,ω〉

+ k(k − 1) (Y sin θ〈j,ω〉)2
∫ 1

0
(1 − t)

∑
i=1,−1

(
1 + iX cos θ + t iY sin θ〈j,ω〉)k−2

dt.

Since
∫

SN−2(k)
〈j,ω〉dω = 0, it follows from (4.1) and (4.3) that

W(v,v∗, θ) ≤ −k(k − 1)

2
|SN−2|X2 sin2 θ + k(k − 1)Y 2 sin2 θ

∫
SN−2(k)

Zk(ω)dω (4.5)

where

Zk(ω) =
∫ 1

0
(1 − t)

∑
i=1,−1

(
1 + iX cos θ + t iY sin θ〈j,ω〉)k−2

dt.

By considering 1 < k < 2 (for which we use (4.4)) and k ≥ 2 respectively, we compute for
all k > 1

Y 2Zk(ω) ≤ 2k+1r2(1 − 〈h,k〉2)k̄, ∀ω ∈ SN−2(k) (4.6)

where k̄ = min{k−1,1}. Since −X2 ≤ r2((1−〈h,k〉2)k̄ −1), it follows from (4.5) and (4.6)
that

W(v,v∗, θ) ≤ k(k − 1)

2
|SN−2|r2 sin2 θ

{
2k+3(1 − 〈h,k〉2)k̄ − 1

}
.

This proves the lemma. �
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Lemma 4.2 Let B(v − v∗, σ ) satisfy (1.6) and (1.7) with the constants A∗,A∗. Let
L[�〈·〉s](v, v∗) be defined in (1.9) for ϕ(v) = 〈v〉s . Then for any s > 2 we have

(I) If −2 ≤ γ < 0, then for any ε > 0

L[�〈·〉s](v, v∗)

≤ −cs

(〈v〉s+γ + 〈v∗〉s+γ
) + εCs

(〈v〉s+γ 〈v∗〉2 + 〈v∗〉s+γ 〈v〉2
) + Cs,ε〈v〉2〈v∗〉2.

(II) If −4 ≤ γ < −2, then for any λ ≥ 1

1{|v−v∗|>λ}L[�〈·〉s](v, v∗)

≤ −cs

(〈v〉s+γ + 〈v∗〉s+γ
) + Csλ

2+γ
(〈v〉s+γ 〈v∗〉2 + 〈v∗〉s+γ 〈v〉2

) + Cs,λ〈v〉2〈v∗〉2.

Here the constants 0 < cs,Cs < ∞ depend only on N,A∗,A∗ and s, while 0 <

Cs,ε,Cs,λ < ∞ depend also on ε and λ respectively.

Proof By symmetry L[�〈·〉s](v, v∗) = L[�〈·〉s](v∗, v), we may assume that |v| ≥ |v∗|. We
note also that

〈v〉s+γ ≥ 1

2

(〈v〉s+γ + 〈v∗〉s+γ
)

if |v| ≥ |v∗| and s + γ ≥ 0. (4.7)

By Lemma 4.1 and �〈·〉s = 〈v′〉s + 〈v′∗〉s − 〈v〉s − 〈v∗〉s , we have

L[�〈·〉s](v, v∗)

≤ s(s − 2)
(〈v〉2 + 〈v∗〉2

)(s−4)/2 |v + v∗|2|v − v∗|2
[
(1 − 〈h,k〉2)s̄/2 − 2−s/2−3

]

×
∫

SN−1
B(v − v∗, σ ) sin2 θ dσ.

Let Rs = 2(s̄+4+s/2)/s̄ , and consider L[�〈·〉s](v, v∗) = L1(v, v∗) + L2(v, v∗) where

L1(v, v∗) := L[�〈·〉s](v, v∗)1{|v|≤Rs |v∗|},

L2(v, v∗) := L[�〈·〉s](v, v∗)1{|v|>Rs |v∗|}.

By assumption (1.6) we have

L1(v, v∗) ≤ Cs

(〈v〉2 + 〈v∗〉2
)(s−4)/2 |v + v∗|2|v − v∗|2+γ 1{|v|≤Rs |v∗|}. (4.8)

To estimate L2(v, v∗), observing that

|v| > Rs |v∗| =⇒ 1 − 〈h,k〉2 ≤ 4|v|2|v∗|2
(|v|2 + |v∗|2)2

<
4

R2
s

,

we have by the choice of Rs that

(
(1 − 〈h,k〉2)s̄/2 − 2−3−s/2

)
1{|v|>Rs |v∗|} ≤ −2−4−s/21{|v|>Rs |v∗|}.

Thus, using the assumption (1.7), we obtain

L2(v, v∗) ≤ −cs

(〈v〉2 + 〈v∗〉2
)(s−4)/2 |v + v∗|2|v − v∗|2(1 + |v − v∗|)γ 1{|v|>Rs |v∗|}. (4.9)
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(I) Assume −2 ≤ γ < 0. Using |v ± v∗| ≤ 21/2(〈v〉2 + 〈v∗〉2)1/2 and recalling s > 2 and
|v| ≥ |v∗|, we have by (4.8) that

L1(v, v∗) ≤ Cs〈v〉s+γ 1{|v|≤Rs |v∗|} ≤ Cs〈v〉s+γ−2〈v∗〉2.

Applying the elementary inequality

ak−2b2 ≤ εakb2 + (1 + ε−(k−2)/2)a2b2, a, b ≥ 1, k ∈ R1, ε > 0, (4.10)

we get for any ε > 0

L1(v, v∗) ≤ εCs〈v〉s+γ 〈v∗〉2 + Cs,ε〈v〉2〈v∗〉2.

To estimate L2(v, v∗), we observe by Rs > 2 and γ < 0 that

|v| > Rs |v∗| and |v| > 1 =⇒ |v ± v∗| ≥ 1

4
〈v〉 and (1 + |v − v∗|)γ ≥ 4γ 〈v〉γ .

By (4.9) (considering s ≤ 4 and s > 4 respectively) we have

L2(v, v∗) ≤ L2(v, v∗)1{|v|>1} ≤ −cs〈v〉s+γ 1{|v|>Rs |v∗|}1{|v|>1}

= cs〈v〉s+γ
(−1 + 1{|v|>Rs |v∗|}1{|v|≤1} + 1{|v|≤Rs |v∗|}

)
.

Since 〈v〉s+γ 1{|v|>Rs |v∗|}1{|v|≤1} ≤ Cs , and by (4.8) for any ε > 0,

〈v〉s+γ 1{|v|≤Rs |v∗|} ≤ Cs〈v〉s+γ−2〈v∗〉2 ≤ εCs〈v〉s+γ 〈v∗〉2 + Cs,ε〈v〉2〈v∗〉2,

it follows that

L2(v, v∗) ≤ −cs〈v〉s+γ + εCs〈v〉s+γ 〈v∗〉2 + Cs,ε〈v〉2〈v∗〉2.

Therefore,

L[�〈·〉s](v, v∗) = L1(v, v∗) + L2(v, v∗) ≤ −cs〈v〉s+γ + εCs〈v〉s+γ 〈v∗〉2 + Cs,ε〈v〉2〈v∗〉2.

This together with (4.7) (because s + γ > 0) gives the inequality in part (I) of the lemma.

(II) Assume −4 ≤ γ < −2. Given any λ ≥ 1. By (4.8) and 2 + γ < 0 we have

1{|v−v∗|>λ}L1(v, v∗) ≤ Csλ
2+γ 1{|v|≤Rs |v∗|}〈v〉s−2 ≤ Csλ

2+γ 〈v〉s+γ 〈v∗〉2. (4.11)

Note that if s ≤ 4, then s + γ ≤ 2 so that 〈v〉s+γ ≤ 〈v〉2 and 〈v〉s+γ , 〈v∗〉s+γ ≤ 〈v〉2〈v∗〉2 and
thus by (4.8) and neglecting the non-positive term 1{|v−v∗|>λ}L2(v, v∗) we get

1{|v−v∗|>λ}L[�〈·〉s](v, v∗) ≤ Csλ
2+γ 〈v〉2〈v∗〉2 ≤ −(〈v〉s+γ + 〈v∗〉s+γ ) + Cs,λ〈v〉2〈v∗〉2,

which is a special case of the inequality in part (II) of the lemma. Next, assume s > 4. To
estimate 1{|v−v∗|>λ}L2(v, v∗) we see from Rs > 2 and λ ≥ 1 that

|v − v∗| > λ and |v| > Rs |v∗|
=⇒ |v ± v∗| ≥ 1

2
|v|, 1 < |v − v∗| ≤ 2|v|, and |v| ≥ 1

4
〈v〉.
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This implies by (4.9) and γ < 0 that

1{|v−v∗|>λ}L2(v, v∗) ≤ −cs1{|v−v∗|>λ}1{|v|>Rs |v∗|}〈v〉s+γ

= cs

(−1 + 1{|v|≤Rs |v∗|} + 1{|v−v∗|≤λ}1{|v|>Rs |v∗|}
) 〈v〉s+γ .

Since Rs > 2 and |v| ≤ Rs |v∗| imply 〈v〉 ≤ Rs〈v∗〉, it follows from the inequality (4.10) that
for any ε > 0,

1{|v|≤Rs |v∗|}〈v〉s+γ ≤ εCs〈v〉s+γ 〈v∗〉2 + Cs,ε〈v〉2〈v∗〉2.

Also, we see that |v − v∗| ≤ λ and |v| > Rs |v∗| =⇒ |v| ≤ 2λ. Thus,

1{|v−v∗|≤λ}1{|v|>Rs |v∗|}〈v〉s+γ ≤ Cs,λ ≤ Cs,λ〈v〉2〈v∗〉2.

Let us now choose ε = λ2+γ . Then

1{|v−v∗|>λ}L2(v, v∗) ≤ −cs〈v〉s+γ + Csλ
2+γ 〈v〉s+γ 〈v∗〉2 + Cs,λ〈v〉2〈v∗〉2. (4.12)

Summarizing (4.11) and (4.12) gives

1{|v−v∗|>λ}L[�〈·〉s](v, v∗) ≤ −cs〈v〉s+γ + Csλ
2+γ 〈v〉s+γ 〈v∗〉2 + Cs,λ〈v〉2〈v∗〉2

which together with s + γ > 0 and (4.7) gives the inequality in part (II) of the lemma. �

Proof of Theorem 1 (Moment estimates) We use a short notation

‖f ‖s := ‖f ‖L1
s
.

Let f (v, t) be a weak solution of (B) with f |t=0 = f0 ∈ L1
(1,0,1) ∩ L1

s ∩ L1 logL(RN) and
s > 2. Recall that f conserves the mass and energy: ‖f (t)‖0 ≡ 1, ‖f (t)‖2 ≡ 1 + N .

Step 1. We shall prove that f ∈ L∞
loc([0,∞),L1

s (R
N)), i.e.

sup
t∈[0,T ]

‖f (t)‖s < ∞, ∀T < ∞. (4.13)

For any λ ≥ 1, we split B = Bλ + Bλ as in (2.11) and let Lλ[·], Qλ(·) correspond to
Bλ(z, σ ),Bλ(z, σ ) respectively. Let χ ∈ C∞

c (RN) be the function used above (see (3.1)).
For any k ≥ 2, n ≥ 1, let

ϕk(v) = 〈v〉k, ϕk,n(v) = ϕk(v)χ(v/n).

Then ϕk,n ∈ C2
b (R

N) and so for −2 ≤ γ < 0
∫

RN

ϕk,n(v)f (v, t)dv =
∫

RN

ϕk,n(v)f0(v)dv + 1

2

∫ t

0
dτ

∫
RN ×RN

L[�ϕk,n]ff∗dv∗dv

(4.14)
and for −4 ≤ γ < −2

∫
RN

ϕk,n(v)f (v, t)dv

=
∫

RN

ϕk,n(v)f0(v)dv − 1

4

∫ t

0
dτ

∫
RN

Qλ(f |�ϕk,n)dv

+ 1

2

∫ t

0
dτ

∫
RN ×RN

Lλ[�ϕk,n]ff∗dv∗dv (4.15)
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where we used (2.12). Moreover

0 ≤ ϕk,n(v) ≤ ϕk(v), lim
n→∞ϕk,n(v) = ϕk(v),

lim
n→∞�ϕk,n(v

′, v′
∗, v, v∗) = �ϕk(v

′, v′
∗, v, v∗),

lim
n→∞L[�ϕk,n](v, v∗) = L[�ϕk](v, v∗), lim

n→∞Lλ[�ϕk,n](v, v∗) = Lλ[�ϕk](v, v∗),

|∂2ϕk(v)|, sup
n≥1

|∂2ϕk,n(v)| ≤ Ck〈v〉k−2,

and by introducing

�k,α(v, v∗) := (1 + |v|2 + |v∗|2)(k−2)/2|v − v∗|α

and using Lemma 2.1, and (1.9), we have

|�ϕk|, sup
n≥1

|�ϕk,n| ≤ Ck�k,2(v, v∗) sin θ, (4.16)

∣∣∣∣
∫

SN−2(k)

�ϕkdω

∣∣∣∣, sup
n≥1

∣∣∣∣
∫

SN−2(k)

�ϕk,ndω

∣∣∣∣ ≤ Ck�k,2(v, v∗) sin2 θ, (4.17)

|L[�ϕk](v, v∗)|, sup
n≥1

|L[�ϕk,n](v, v∗)| ≤ Ck�k,2+γ (v, v∗). (4.18)

The constants Ck depend only on k,N,γ,A∗. In the following we assume 2 ≤ k ≤ s.
Suppose −2 ≤ γ < 0. In (4.14) letting n → ∞ we obtain by Fatou’s Lemma and (4.18)

that

‖f (t)‖L1
k
≤ ‖f0‖s + Ck

∫ t

0
dτ

∫
RN ×RN

�k,2+γ ff∗dv∗dv.

Since −2 ≤ γ < 0 implies

�k,2+γ (v, v∗) ≤ Ck

(〈v〉k+γ 〈v∗〉2 + 〈v∗〉k+γ 〈v〉2
)

it follows form the conservation of mass and energy that

‖f (t)‖k ≤ ‖f0‖s + Ck

∫ t

0
‖f (τ)‖k+γ dτ, t ≥ 0.

Now take k = km = min{s,2 + m|γ |},m = 1,2, . . . . By γ < 0 and induction on m we then
obtain

‖f (t)‖km ≤ Ckm(1 + t)m, t ≥ 0, m = 1,2, . . . .

This proves (4.13) for −2 ≤ γ < 0. Next suppose −4 ≤ γ < −2. Observing that |v − v∗| ≤
λ =⇒ 1 + |v|2 + |v∗|2 ≤ 4λ〈v〉〈v∗〉 and |v − v∗|4+γ ≤ λ4+γ , we have

1{|v−v∗|≤λ}[�k,2(v, v∗)]2|v − v∗|γ ≤ Ckλ
k+2+γ 〈v〉k−2〈v∗〉k−2,∫

RN ×RN

1{|v−v∗|≤λ}[�k,2(v, v∗)]2|v − v∗|γ ff∗dv∗dv ≤ Ckλ
k+2+γ ‖f (τ)‖2

k−2.
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Therefore using (4.16) and Lemma 2.2 we obtain
∣∣∣∣
∫ t

0
dτ

∫
RN

Qλ(f |�ϕk,n)dv

∣∣∣∣ ≤ Ckλ
(k+2+γ )/2

∫ t

0
‖f (τ)‖k−2

√
D(f (τ)) dτ. (4.19)

Next, by 2 + γ < 0 and λ ≥ 1 we have

1{|v−v∗|>λ}�k,2+γ (v, v∗) ≤ Ck

(〈v〉k−2 + 〈v∗〉k−2
)

which gives by (4.18) and Lλ[·] = 1{|v−v∗|>λ}L[·] that

1

2

∫ t

0
dτ

∫
RN ×RN

Lλ[�ϕk,n]ff∗dv∗dv ≤ Ck

∫ t

0
‖f (τ)‖k−2 dτ. (4.20)

In the equation (4.15), letting λ = 1 and n → ∞, we obtain from (4.19), (4.20) and Fatou’s
Lemma that

‖f (t)‖k ≤ ‖f0‖s + Ck

∫ t

0
‖f (τ)‖k−2

(
1 + √

D(f (τ))
)

dτ.

Now we choose k = km = min{s,2m}. Then by induction on m it is easy to show that there
are constants 0 < Ckm < ∞ such that

‖f (t)‖km ≤ Ckm(1 + t)m−1, t ≥ 0, m = 1,2, . . . .

This proves (4.13) for −4 ≤ γ < −2.
Step 2. We shall prove the following inequality

‖f (t)‖s + cs

∫ t

0
‖f (τ)‖s+γ dτ ≤ Cs(1 + t), t ≥ 0 (4.21)

which implies (1.16) because γ < 0. Here and below the constants 0 < cs, Cs < ∞ depend
only on N,γ,A∗,A∗, s and ‖f0‖L1

s
, and in case −4 ≤ γ < −2, they depend also on H(f0).

From the pointwise bounds (4.16)–(4.18) and integrability shown in Step 1 we see that
the dominated convergence theorem can be used and we get from (4.14) and (4.15) with
k = s that for −2 ≤ γ < 0

‖f (t)‖s = ‖f0‖s + 1

2

∫ t

0
dτ

∫
RN ×RN

L[�ϕs]ff∗dv∗dv, (4.22)

and for −4 ≤ γ < −2

‖f (t)‖s = ‖f0‖s − 1

4

∫ t

0
dτ

∫
RN

Qλ(f |�ϕs)dv + 1

2

∫ t

0
dτ

∫
RN ×RN

Lλ[�ϕs]ff∗dv∗dv.

(4.23)

To prove (4.21), we first consider −2 ≤ γ < 0. By Lemma 4.2 (recalling ϕs(v) = 〈v〉s ) and
the conservation of mass and energy we have from (4.22) that for any ε > 0

‖f (t)‖s ≤ ‖f0‖s − (cs − εCs)

∫ t

0
‖f (τ)‖s+γ dτ + Cs,εt, t ≥ 0.

Therefore choosing ε = cs

2Cs
leads to (4.21) (with different constants).
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Next assume −4 ≤ γ < −2. Using inequality (4.19) for k = s and letting n → ∞ we
have ∣∣∣∣

∫ t

0
dτ

∫
RN

Qλ(f |�ϕs)dv

∣∣∣∣ ≤ Csλ
(s+2+γ )/2

∫ t

0
‖f (τ)‖s−2

√
D(f (τ))dτ.

By the Cauchy-Schwarz inequality and using s − 4 ≤ s + γ ,

‖f (τ)‖s−2 ≤ √‖f (τ)‖s

√‖f (τ)‖s−4 ≤ √‖f (τ)‖s

√‖f (τ)‖s+γ .

Therefore, for any ε > 0

λ(s+2+γ )/2‖f (τ)‖s−2

√
D(f (τ)) ≤ 1

2
ε‖f (τ)‖s+γ + 1

2ε
λs+2+γ ‖f (τ)‖sD(f (τ)),

and so

1

4

∣∣∣∣
∫ t

0
dτ

∫
RN

Qλ(f |�ϕs)dv

∣∣∣∣ ≤ εCs

∫ t

0
‖f (τ)‖s+γ dτ + Cs,ε,λ

∫ t

0
‖f (τ)‖sD(f (τ))dτ.

Also, using Lemma 4.2 we have as shown above that

1

2

∫ t

0
dτ

∫
RN ×RN

Lλ[�ϕs]ff∗dv∗dv ≤ − (
cs − Csλ

2+γ
)∫ t

0
‖f (τ)‖s+γ dτ + Cs,λ t.

Choose ε = λ2+γ . Then from (4.23) and the above estimates we obtain

‖f (t)‖s ≤ ‖f0‖s − (
cs − Csλ

2+γ
)∫ t

0
‖f (τ)‖s+γ dτ + Cs,λ

∫ t

0
‖f (τ)‖sD(f (τ))dτ + Cs,λt.

We can assume that Cs ≥ cs . By 2 + γ < 0 we can choose

λ =
(

cs

2Cs

)1/(2+γ )

(> 1).

Then with different constants we obtain

‖f (t)‖s + cs

∫ t

0
‖f (τ)‖s+γ dτ ≤ Cs(1 + t) + Cs

∫ t

0
‖f (τ)‖sD(f (τ))dτ, t ≥ 0.

By Gronwall’s Lemma, this gives

‖f (t)‖s + cs

∫ t

0
‖f (τ)‖s+γ dτ ≤ Cs(1 + t) exp

(
Cs

∫ t

0
D(f (τ))dτ

)
, t ≥ 0

which implies (4.21) because
∫ ∞

0 D(f (τ))dτ ≤ CN,H(f0) < ∞. �

5 Convergence to Equilibrium in Broad Generality

In this section we give a unified treatment of strong convergence to equilibrium which in-
cludes all cases (soft potentials, hard potentials, etc., with and without cutoff). In the follow-
ing theorem, the functions f (v, t) are not even assumed to be solutions of the Boltzmann
equation: Their only connection to the Boltzmann equation is the requirement (5.3) below
in the integrated entropy dissipation.
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Theorem 4 Let B(z,σ ) be a collision kernel satisfying B(z,σ ) > 0 a.e. (z, σ ) ∈ RN × SN−1,
and let 0 ≤ f ∈ L∞([0,∞);L1

2(R
N)) satisfy

f (·, t) ∈ L1
(1,0,1)(R

N), ∀ t ≥ 0; sup
t≥0

∫
RN

f (v, t)�(f (v, t))dv < ∞, (5.1)

lim
|t1−t2|→0

∫
RN

ϕ(v)
(
f (v, t1) − f (v, t2)

)
dv = 0, ∀ϕ ∈ C∞

c (RN), (5.2)

∫ ∞

0
D(f (t))dt < ∞, (5.3)

‖f (t)‖L1
2+

:=
∫

RN

〈v〉2�(v)f (v, t)dv < ∞, ∀ t ≥ t0 (5.4)

for some t0 ≥ 0, where �(r) ≥ 0,�(v) ≥ 1 satisfy limr→∞ �(r) = ∞, lim|v|→∞ �(v) =
∞, and D(f ) is defined in (1.8) with the present B(z,σ ). Then for the Maxwellian M ∈
L1

(1,0,1)(R
N) given by (1.14) we have

(I) If

sup
T ≥t0

1

T

∫ T

t0

‖f (t)‖L1
2+

dt < ∞, (5.5)

then

lim
T →∞

1

T

∫ T

0
‖f (t) − M‖L1

2
dt = 0. (5.6)

(II) If

lim
|t1−t2|→0

‖f (t1) − f (t2)‖L1 = 0, sup
t≥t0

‖f (t)‖L1
2+

< ∞, (5.7)

then

lim
t→∞‖f (t) − M‖L1

2
= 0. (5.8)

Proof First of all, we use ‖f (t)−M‖L1
2
≤ CN

√‖f (t) − M‖L1 (see (1.15)). Hence, to prove
the theorem, it suffices to prove the apparently weaker result in which
‖f (t) − M‖L1

2
is replaced by ‖f (t) − M‖L1 . Also, if we let Dmin(f ) correspond to

Bmin(z, σ ) := min{B(z,σ ),1}, then Dmin(f (t)) ≤ D(f (t)), so that by replacing B(z,σ )

with Bmin(z, σ ), we can assume for notational convenience that B is bounded: B(z,σ ) ≤ 1.
From (5.1) we have

sup
t≥0

∫
RN

f (v, t)
(〈v〉2 + �(f (v, t))

)
dv < ∞ (5.9)

which implies that {f (·, t)}t≥0 is weakly compact in L1(RN). Here and below “compact
in L1” always means “relatively compact in L1”. We now split Q(f ) as usual as

Q(f )(v, t) = Q+(f )(v, t) − Q−(f )(v, t) (5.10)
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where

Q+(f )(v, t) =
∫

RN ×SN−1
B(v − v∗, σ )f ′f ′

∗dσdv∗, (5.11)

Q−(f )(v, t) =
∫

RN ×SN−1
B(v − v∗, σ )ff∗dσdv∗ = f (v, t)L(f )(v, t), (5.12)

L(f )(v, t) =
∫

RN

‖B(z, ·)‖L1(SN−1)f (v − z, t)dz. (5.13)

Then using the special identity Q+(M)(v) = M(v)L(M)(v) we have

(f − M)L(M) = −Q(f ) + Q+(f ) − Q+(M) − f L(f − M). (5.14)

As shown in the proof of Lemma 2.2, applying the inequality (2.10) and the Cauchy-
Schwarz inequality, we have

‖Q(f )(t)‖L1 ≤
∫

RN ×RN ×SN−1
B(v − v∗, σ )|f ′f ′

∗ − ff∗|dσdv∗dv

≤
√

4
∫

RN

f (v, t)L(f )(v, t)dv
√

D(f (t)) ≤
√

4|SN−1|√D(f (t)). (5.15)

Let us write for any 0 < R < ∞

f − M = 1{|v|≤R}
1

L(M)
(f − M)L(M) + 1{|v|>R}(f − M).

Then using (5.14), (5.15) we have

‖f (t) − M‖L1 ≤ 1

LR

(
CN

√
D(f (t)) + E(t)

)
+ 2N

R2
, t ≥ 0 (5.16)

where LR = min|v|≤R L(M)(v) > 0 and

E(t) = ‖Q+(f )(t) − Q+(M)‖L1 + ‖f (t)g(t)‖L1 , g(v, t) = L(f − M)(v, t).

Here the positivity LR > 0 is obvious because the function v �→ L(M)(v) is continuous on
RN and, by the assumption on B , ‖B(z, ·)‖L1(SN−1) > 0 a.e. z ∈ RN .

We next prove that for any sequence {tn}n≥1 ⊂ [t0,∞) satisfying tn → ∞ (n → ∞) and

sup
n≥1

‖f (tn)‖L1
2+

< ∞, (5.17)

there exists a subsequence, still denoted by {tn}n≥1, and a sequence {t̄n}n≥1 satisfying 0 ≤
t̄n − tn → 0 (n → ∞), such that

lim
n→∞E(tn) = lim

n→∞E(t̄n) = 0, lim
n→∞D(f (t̄n)) = 0. (5.18)

To do this we use the fact that

δn :=
√∫ ∞

tn

D(f (t))dt + 1

n
=⇒ 1

δn

∫ tn+δn

tn

D(f (t))dt < δn
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so that there exist t̄n ∈ [tn, tn +δn] such that D(f (t̄n)) ≤ δn → 0 (n → ∞) by the assumption
(5.3). By L1-weak compactness of {f (·, t)}t≥0 there exists a subsequence of {(tn, t̄n)}n≥1,
still denoted by {(tn, t̄n)}n≥1, and functions 0 ≤ f∞, f̄∞ ∈ L1(RN) such that f (·, tn) →
f∞, f (·, t̄n) → f̄∞ (n → ∞) weakly in L1(RN). Since 0 ≤ t̄n − tn ≤ δn → 0, it follows
from (5.2) that f∞ = f̄∞ a.e. on RN . On the other hand, by f (·, tn) ∈ L1

(1,0,1)(R
N) (∀n)

and (5.17) we see that f∞ ∈ L1
(1,0,1)(R

N). And by convexity and nonnegativity of (x, y) �→
(x − y) log(x/y) and Fatou’s Lemma, we obtain

D(f∞) ≤ lim
n→∞D(f (t̄n)) = 0.

Since B(z,σ ) > 0 for a.e. (z, σ ) ∈ RN × SN−1, it follows from the well-known result
that f∞(v) = ae−b|v−u0|2 a.e. on RN for some constants a > 0, b > 0 and u0 ∈ RN .
Since f∞,M ∈ L1

(1,0,1)(R
N), this implies f∞ = M a.e. on RN . We therefore conclude that

f (·, tn) ⇀ M,f (·, t̄n) ⇀ M (n → ∞) weakly in L1(RN).
Next, since B(z,σ ) is bounded and f (v, t) satisfies (5.9), it follows from Lions’ com-

pactness result ([17], see also e.g. [3, 19, 28, 29]) that the set {Q+(f )(·, t)}t≥0 is strongly
compact in L1(RN). For convenience of the reader, we give here a short proof. By the cri-
terion of L1-strong compactness and the L1

2-bound supt≥0 ‖Q+(f )(·, t)‖L1
2
≤ CN we need

only to show that

sup
t≥0

‖Q+(f )(· + h, t) − Q+(f )(·, t)‖L1 → 0 as h → 0. (5.19)

To do this, we use truncation

1 < R < ∞, fR(v, t) := f (v, t)1{|v|≤R}∩{f (v,t)≤R}.

Then v �→ Q+(fR)(v, t) is bounded and compactly supported uniformly in t :

Q+(fR)(v, t) ≤ R2
∫

RN ×SN−1
1{|v′ |≤R}∩{|v′∗|≤R}dσdv∗ ≤ CR1{|v|≤√

2R}. (5.20)

From e.g. [19] there is a strictly positive measurable function �B(ξ) constructed from
B(z,σ ) satisfying �B(ξ) → ∞ (|ξ | → ∞) such that

∫
RN

�B(ξ)|F (Q+(fR)(·, t))(ξ)|2dξ

≤ CN

∫
RN ×RN

f 2
R(v, t)f 2

R(v∗, t)(1 + |v − v∗|2)Ndvdv∗ ≤ CR. (5.21)

Here and below CR < ∞ depends only on N and R, and F (g)(ξ) is the Fourier transform:

F (g)(ξ) =
∫

RN

g(v)e−iξ ·vdv.

From (5.20) we have

Q+(fR)(v + h, t) − Q+(fR)(v, t) = (
Q+(fR)(v + h, t) − Q+(fR)(v, t)

)
1{|v|≤1+√

2R}

for all v,h ∈ RN with |h| ≤ 1. Therefore by Cauchy-Schwarz inequality, Parseval identity,
and (5.21) (considering |ξ | ≤ |h|−1/2 and |ξ | > |h|−1/2) we obtain
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‖Q+(fR)(· + h, t) − Q+(fR)(·, t)‖L1

≤ CR

(∫
RN

|1 − e−iξ ·h|2|F (Q+(fR)(·, t))(ξ)|2dξ

)1/2

≤ CR

(
|h| + sup

|ξ |>|h|−1/2

1

�B(ξ)

)1/2

=: CR�(h), ∀0 < |h| ≤ 1.

On the other hand, there is R0 > 0 such that for all R > R0 we have �(R) > 0 and

‖Q+(fR)(·, t) − Q+(f )(·, t)‖L1 ≤ CN

∫
{f (v,t)>R}∪{|v|>R}

f (v, t)dv

≤ CN

(
1

�(R)
+ 1

R2

)
.

Combining these we obtain for all 0 < |h| ≤ 1 and all R > R0

sup
t≥0

‖Q+(f )(· + h, t) − Q+(f )(·, t)‖L1 ≤ CR�(h) + CN

(
1

�(R)
+ 1

R2

)

which implies (5.19) by first letting h → 0 and then letting R → ∞.
For any ψ ∈ L∞(RN), the function

�(v, v∗) :=
∫

SN−1
B(v − v∗, σ )ψ(v′)dσ

belongs to L∞(RN × RN). By f (·, tn) − M ⇀ 0 weakly in L1(RN) and (5.9) we have
∫

RN

ψ(v)
(
Q+(f )(v, tn) − Q+(M)(v)

)
dv

=
∫

RN ×RN

�(v, v∗)
(
f (v, tn)f (v∗, tn) − M(v)M(v∗)

)
dv∗dv → 0 (n → ∞).

This implies limn→∞ ‖Q+(f )(tn) − Q+(M)‖L1 = 0 because {Q+(f )(tn)}n≥1 is strongly
compact in L1(RN). Also by weak convergence and ‖B(z, ·)‖L1(SN−1) ≤ |SN−1| we have

g(v, tn) =
∫

RN

‖B(v − v∗, ·)‖L1(SN−1)

(
f (v∗, tn) − M(v∗)

)
dv∗ → 0 (n → ∞)

for all v ∈ RN . Since |g(v, tn)| ≤ |SN−1|, it follows from (5.9) that limn→∞ ‖f (tn)g(tn)‖L1 =
0. Thus limn→∞ E(tn) = 0. The same argument also applies to f (v, t̄n) and gives
limn→∞ E(t̄n) = 0.

Having proven (5.18) (under the condition (5.17)), we can now prove the timed averaging
convergence (5.6) and the strong convergence (5.8) for L1-norm ‖f (t)−M‖L1 . Suppose the
assumptions in part (I) are satisfied. By the assumption (5.3) we have

1

T

∫ T

0

√
D(f (t)) dt ≤

√
1

T

∫ T

0
D(f (t)) dt → 0 (T → ∞).

Thus, from (5.16) we see that to prove (5.6) we need only to prove that

1

T

∫ T

0
E(t)dt → 0 (T → ∞). (5.22)
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We consider the following strategy: For any given ε > 0, choose a sequence of Tn = Tn,ε ∈
[(2 + t0)

2,∞) satisfying Tn → ∞ (n → ∞) such that

lim sup
T →∞

1

T

∫ T

t0

(
E(t) − ε‖f (t)‖L1

2+

)
dt = lim

n→∞
1

|In|
∫

In

(
E(t) − ε‖f (t)‖L1

2+

)
dt (5.23)

where In = [√Tn, Tn] and we have used the boundedness

sup
t≥0

E(t) ≤ 4|SN−1|, C := sup
T ≥t0

1

T

∫ T

t0

‖f (t)‖L1
2+

dt < ∞.

For every n ∈ N there exists tn ∈ In such that

1

|In|
∫

In

(
E(t) − ε‖f (t)‖L1

2+

)
dt ≤ E(tn) − ε‖f (tn)‖L1

2+
. (5.24)

Since Tn ≥ (2 + t0)
2, this gives an L1

2+-bound (5.17):

‖f (tn)‖L1
2+

≤ 1

ε
E(tn) + 2

Tn

∫ Tn

t0

‖f (t)‖L1
2+

dt ≤ 4

ε
|SN−1| + 2C.

Therefore there is a subsequence, still denote it as {tn}n≥1, such that E(tn) → 0 as n → ∞.
By (5.23), (5.24) we thus obtain

lim sup
T →∞

1

T

∫ T

t0

E(t)dt ≤ lim sup
T →∞

1

T

∫ T

t0

(
E(t) − ε‖f (t)‖L1

2+

)
dt + εC ≤ εC.

Letting ε → 0 leads to (5.22).
Finally suppose the assumptions in part (II) are satisfied. Choose a sequence {tn}n≥1 ⊂

[t0,∞) satisfying tn → ∞ such that

lim sup
t→∞

‖f (t) − M‖L1 = lim
n→∞‖f (tn) − M‖L1 .

By the assumption in (5.7), supn≥1 ‖f (tn)‖L1
2+

< ∞. So there exist a subsequence, still

denote it as {tn}n≥1, and a sequence {t̄n}n≥1 satisfying 0 ≤ t̄n − tn → 0 (n → ∞), such
that (5.18) holds true. Therefore by assumption (5.7) and applying (5.16) we have
limn→∞ ‖f (tn) − f (t̄n)‖L1 = 0 and

lim
n→∞‖f (tn) − M‖L1 ≤ lim sup

n→∞
‖f (t̄n) − M‖L1

≤ 1

LR

(
CN lim

n→∞
√

D(f (t̄n)) + lim
n→∞E(t̄n)

)
+ 2N

R2
= 2N

R2
.

∀0 < R < ∞
This proves limn→∞ ‖f (tn) − M‖L1 = 0 by letting R → ∞. �

Proof of Theorem 1 (Time averaged convergence) This is a consequence of part (I) of The-
orem 4 because the weak solution f in Theorem 1 satisfies all conditions (5.1)–(5.5) with
�(f ) = | logf | and �(v) = 〈v〉s+γ−2, where the uniform continuity (5.2) is indeed satisfied
for any weak solution (see the proof of (3.5)). �
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6 Lower Bounds on the Convergence Rate

We first consider in the following two special cases (a) and (b) which motivate our work for
general cases on the lower bounds of convergence rate.

Case (a). f |t=0 = f0 ∈ L1
(1,0,1)(R

N) and f ∈ L∞([0,∞);L1
2(R

N)) is a mild solution of (B)
with B(z,σ ) satisfying

‖B(z, ·)‖L1(SN−1) ≤ K(1 + |z|2)γ/2, −∞ < γ < 0.

Case (b). f |t=0 = f0 ∈ L1
(1,0,1) ∩ L1 logL(RN) is an isotropic function and f is an isotropic

weak solution of (B) with B(z,σ ) satisfying

‖B(z, ·)‖L1(SN−1) ≤ K|z|γ , −4 ≤ γ, 1 − N < γ < 0.

Note that under the assumption in Case (a), the existence and uniqueness of mild solu-
tion f is well-known and f conserves the mass, momentum and energy. For Case (b), the
existence of isotopic weak solution f is also obvious.

Theorem 5 For each Cases (a) and (b) there are (explicit) constants 0 < C1,C2 < ∞ de-
pending only on N,K and γ such that

‖f (t) − M‖L1
2
≥ C1

∫
|v|>tα

|v|2f0(v)dv − C2 exp(−t2α/4), ∀ t ≥ 0 (6.1)

where α = 1/min{|γ |, 2} for Case (a) and α = 1/|γ | for Case (b).

Proof Our proof relies on pointwise inequalities for mild solutions of (B). Recall that a
nonnegative measurable function f (v, t) on RN × [0,∞) is called a mild solution of (B)
with initial datum f0 if there is a null set Z ⊂ RN which is independent of t such that

∫ t

0
Q±(f )(v, τ )dτ < ∞, ∀v ∈ RN \ Z,∀ t ≥ 0

and

f (v, t) = f0(v) +
∫ t

0
Q(f )(v, τ )dτ, ∀v ∈ RN \ Z,∀ t ≥ 0.

Here Q+(f ) and Q−(f ) = f L(f ) are defined in (5.10)–(5.13).
In the following, we use the letter Z to denote a null set of RN which is independent

of t—the particular null set may change from line to line. Recall also that if f is a mild
solution and satisfies that for almost every v ∈ RN the function t �→ L(f )(v, t) is locally
integrable on [0,∞), then by Duhamel’s formula:

f (v, t) = f0(v) exp

(
−

∫ t

0
L(f )(v, τ )dτ

)

+
∫ t

0
Q+(f )(v, τ ) exp

(
−

∫ t

τ

L(f )(v, τ1)dτ1

)
dτ
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for all t ≥ 0 and all v ∈ RN \ Z. This gives

f (v, t) ≥ f0(v) exp

(
−

∫ t

0
L(f )(v, τ )dτ

)
, ∀ t ≥ 0,∀v ∈ RN \ Z. (6.2)

Case (a). By the assumption on B , we have

L(f )(v, t) ≤ K

∫
RN

f (v∗, t)
(1 + |v − v∗|)|γ | dv∗.

Let β = min{|γ |, 2}. Then for all v, v∗ ∈ RN ,

1

(1 + |v − v∗|)|γ | ≤ Cβ

|v|β
(
1 + |v∗|2

)
.

Hence, using conservation of mass and energy yields the bound

L(f )(v, t) ≤
CK,β‖f0‖L1

2

|v|β = c

|v|β .

Thus,

f (v, t) ≥ f0(v) exp

(
− c t

|v|β
)

, ∀ t ≥ 0,∀v ∈ RN \ Z,

and in particular,

f (v, t) ≥ f0(v)e−c, ∀ t ≥ 0,∀v ∈ RN \ Z s.t. |v| > tα (6.3)

with α = 1/β . Consequently,
∫

|v|>tα
|v|2f (v, t)dv ≥ e−c

∫
|v|>tα

|v|2f0(v)dv, ∀ t ≥ 0.

Since M(v) = (2π)−N/2e−|v|2/2, it follows that (6.1) holds true:

‖f (t) − M‖L1
2
≥

∫
|v|>tα

|v|2f (v, t)dv −
∫

|v|>tα
|v|2M(v)dv

≥ e−c

∫
|v|>tα

|v|2f0(v)dv − CN exp(−t2α/4), ∀ t ≥ 0.

Case (b). We need to prove that under the assumptions in Case (b), f is also a mild solution
after a modification on a null set of RN × [0,+∞). By −4 ≤ γ < 0 there is m ∈ {1,2} such
that 0 ≤ m − |γ |/2 ≤ 1. We show that

∫
RN

|v|2mQ±(f )(v, t)dv ≤ C‖f0‖2
L1

2
, ∀ t ≥ 0, (6.4)

where C < ∞ depends only on K,γ and N . In fact using ‖B(v − v∗, ·)‖L1(SN−1) ≤
K|v − v∗|γ and |v′|2 ≤ |v|2 + |v∗|2 we have

∫
RN

|v|2mQ±(f )(v, t)dv ≤ K

∫
RN ×RN

f (v, t)f (v∗, t)(|v|2 + |v∗|2)m

|v − v∗||γ | dv∗dv.
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Since f is isotropic, i.e., f (v, t) = f (|v|, t), and |γ | < N − 1, it follows from Lemma 6.1
(see below) that

∫
RN

f (v∗, t)(|v|2 + |v∗|2)m

|v − v∗||γ | dv∗ ≤ CN,γ

∫
RN

f (v∗, t)(|v|2 + |v∗|2)m−|γ |/2dv∗.

Since (|v|2 + |v∗|2)m−|γ |/2 ≤ 〈v〉2〈v∗〉2, (6.4) follows from conservation of mass and energy.
By (6.4) we have

∫ T

0
Q±(f )(v, t)dt < ∞, ∀v ∈ RN \ Z,∀T ∈ [0,∞).

Take any ψ ∈ C∞
c (RN) and let

ϕ(v) = ρ(v)ψ(v), ρ(v) =
( |v|2

1 + |v|2
)m

.

Then using (6.4) we have∫
RN

ϕ(v)Q±(f )(v, t)dv ≤ Cψ‖f0‖2
L1

2
< ∞, ∀ t ≥ 0.

Therefore there is no integrability problem and we have with this ϕ(v) = ψ(v)ρ(v)

−1

4

∫ t

0
dτ

∫
RN

Q(f |�ϕ)(v, τ )dv =
∫ t

0
dτ

∫
RN

ϕ(v)Q(f )(v, t)dv.

Since f is a weak solution, this gives for all ψ ∈ C∞
c (RN)

∫
RN

ψ(v)ρ(v)

{
f (v, t) − f0(v) −

∫ t

0
Q(f )(v, τ )dτ

}
dv = 0, ∀ t ≥ 0.

By L1-integrability of ρ(v){· · ·} and the strict positivity of ρ(v) on v 
= 0, this implies

f (v, t) = f0(v) +
∫ t

0
Q(f )(v, τ )dτ, ∀ t ≥ 0,∀v ∈ RN \ Zt

where Zt are null sets that may depend on t . Let

f̄ (v, t) :=
∣∣∣∣f0(v) +

∫ t

0
Q(f )(v, τ )dτ

∣∣∣∣ , (v, t) ∈ RN × [0,∞).

Then it is not difficult to prove that f̄ (v, t) is a mild solution of (B) and for any t ∈ [0,∞),
f (v, t) = f̄ (v, t) a.e. v ∈ RN . Thus we can replace f̄ with f .

Now for all v ∈ RN \ {0} we compute using Lemma 6.1 below and ‖f (t)‖L1 = 1 that

L(f )(v, t) ≤ K

∫
RN

f (v∗, t)
|v − v∗||γ | dv∗ ≤ c‖f (t)‖L1

|v||γ | = c

|v||γ | , ∀ t ≥ 0.

Therefore (6.3) holds for α = 1/|γ |. This gives
∫

|v|>tα
|v|2f (v, t)dv ≥ e−c

∫
|v|>tα

|v|2f0(v)dv, ∀ t ≥ 0

and thus, (as shown above) f satisfies the inequality (6.1). �
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Lemma 6.1 Let f (v) = f (|v|) be a nonnegative isotropic measurable function on RN with
N ≥ 2. Then for all 0 ≤ α,β < N − 1 and v ∈ RN

∫
RN

f (v∗)dv∗
|v + v∗|α|v − v∗|β ≤ CN,α,β

∫
RN

f (v∗)dv∗
(|v|2 + |v∗|2)(α+β)/2

where

CN,α,β = 2(N+1)/2 |SN−2|
|SN−1|

(
1

N − 1 − α
+ 1

N − 1 − β

)
.

Proof For any v ∈ RN , let v = ρω,ρ ≥ 0,ω ∈ SN−1. Then
∫

RN

f (|v∗|)dv∗
|v + v∗|α|v − v∗|β =

∫ ∞

0
rN−1f (r)

(∫
SN−1

dσ

|ρω + rσ |α|ρω − rσ |β
)

dr.

Since ρ2 + r2 ± 2ρr t ≥ 1
2 (ρ2 + r2)(1 − t2) for ±t ≤ 0, it follows that

∫
SN−1

dσ

|ρω + rσ |α|ρω − rσ |β

≤ |SN−2|
(ρ2 + r2)(α+β)/2

(
2α/2

∫ 1

0
(1 − t2)(N−3−α)/2dt + 2β/2

∫ 1

0
(1 − t2)(N−3−β)/2dt

)

≤ CN,α,β |SN−1| 1

(ρ2 + r2)(α+β)/2
.

This implies the inequality in the lemma. �

It is not clear whether the lower bound estimate (6.1) can be extended to all weak solu-
tions. Our proof for Theorem 2 is very different from the above argument.

Proof of Theorem 2 Part (I). By identity |a−b| = b−a+2(a−b)+ (with (y)+ = max{y,0})
and conservation of mass and energy we have, for all t ≥ 0, R > 0,

‖f (t) − M‖L1
2
≥ 2

∫
|v|>R

|v|2f (v, t)dv − CNe−R2/4 (6.5)

where we used the exponential decay of M(v) = (2π)−N/2e−|v|2/2. We now prove that there
is finite constant Cγ > 0 depending only on N,γ,A∗,A∗, s,‖f0‖L1

s
,H(f0) and K0 such that

for all R ≥ 3 and all t ≥ 0
∫

|v|>R

|v|2f (v, t)dv ≥
∫

|v|>2R

|v|2f0(v)dv − Cγ (1 + t)2−[2/s]

Rβ
, (6.6)

where β = min{s, s − 2 + |γ |}. To prove (6.6), we use truncation. Let χ ∈ C∞(RN) be the
function given in (3.1). For any R > 1, let ψR(v) = |v|2χ(v/R). Then ψR ∈ T ,

|v|21{|v|>2R} ≤ ψR(v) ≤ |v|21{|v|>R}, ∀v ∈ RN, (6.7)

and supR>1 ‖∂2ψR‖L∞ ≤ CN. Also using |v′|2 + |v′∗|2 = |v|2 + |v∗|2 we have

�ψR(v′, v′
∗, v, v∗) = �ψR(v′, v′

∗, v, v∗)1{|v|2+|v∗|2>R2}. (6.8)
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Suppose −4 ≤ γ < −2. Using (1.11) to ϕ = ψR we obtain from (6.7)
∫

|v|>R

|v|2f (v, t)dv ≥
∫

RN

ψR(v)f (v, t)dv

≥
∫

|v|>2R

|v|2f0(v)dv − 1

4

∫ t

0
dτ

∫
RN

Q(f |�ψR)(v, τ )dv.

Let Q1(·, ·) and L1[·] be the operators defined in Lemma 2.3 for λ = 1 corresponding to the
kernels B1(z, σ ) = 1{|v−v∗|≤1}B(z,σ ) and B1(z, σ ) = 1{|z|>1}B(z,σ ) respectively. Then by
Lemma 2.3 we have

∫ t

0
dτ

∫
RN

Q(f |�ψR)(v, τ )dv

=
∫ t

0
dτ

∫
RN

Q1(f |�ψR)(v, τ )dv − 2
∫ t

0
dτ

∫
RN ×RN

L1[�ψR]ff∗dv∗dv.

We compute as in the proof of Lemma 2.2 that
∣∣∣∣
∫ t

0
dτ

∫
RN

Q1(f |�ψR)(v, τ )dv

∣∣∣∣

≤ C

∫ t

0
dτ

(∫
|v|2+|v∗|2≥R2

|v − v∗|4+γ 1{|v−v∗|≤1}ff∗dv∗dv

)1/2 √
D(f (τ))

≤ C

(∫ t

0
dτ

∫
|v|2+|v∗|2≥R2

1{|v−v∗|≤1}ff∗dv∗dv

)1/2

.

By R ≥ 3, we see that |v| > R/
√

2 and |v − v∗| ≤ 1 imply |v∗| > R/3 and so

∫ t

0
dτ

∫
|v|2+|v∗|2≥R2

1{|v−v∗|≤1}ff∗dv∗dv

≤ 2
∫ t

0
dτ

(∫
|v|≥R/3

f (v, τ )dv

)2

≤ C

R2s

∫ t

0
(1 + τ)2−2[2/s]dτ ≤ C(1 + t)3−2[2/s]

R2s

where we have used the moment estimates (for s > 2) and the conservation of mass and
energy (for s = 2). Thus

∣∣∣∣
∫ t

0
dτ

∫
RN

Q1(f |�ψR)(v, τ )dv

∣∣∣∣ ≤ C(1 + t)3/2−[2/s]

Rs
.

Also by 2 + γ < 0 we have
∣∣∣∣
∫ t

0
dτ

∫
RN

L1[�ψR]ff∗dv

∣∣∣∣

≤ C

∫ t

0
dτ

∫
|v|2+|v∗|2≥R2

|v − v∗|2+γ 1{|v−v∗|>1}ff∗dv∗dv
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≤ C

∫ t

0
dτ

∫
|v|≥R/

√
2
f (v, τ )dv ≤ C

Rs

∫ t

0
(1 + τ)1−[2/s]dτ ≤ C(1 + t)2−[2/s]

Rs
.

Therefore

∫
|v|>R

|v|2f (v, t)dv ≥
∫

|v|>2R

|v|2f0(v)dv − Cγ (1 + t)2−[2/s]

Rs
. (6.9)

Next suppose −2 ≤ γ < 0. In this case we use (6.8) and moment estimates to get

∣∣∣∣
∫ t

0
dτ

∫
RN ×RN

L[�ψR]ff∗dv∗v
∣∣∣∣

≤ C

∫ t

0
dτ

∫
|v|2+|v∗|2>R2

|v − v∗|2+γ ff∗dv∗dv

≤ C

Rs−2+|γ |

∫ t

0
dτ

∫
RN ×RN

(|v|2 + |v∗|2)s/2ff∗dv∗dv ≤ C
(1 + t)2−[2/s]

Rs−2+|γ | , t ≥ 0.

Therefore using (1.12) with ϕ = ψR we obtain

∫
|v|>R

|v|2f (v, t)dv ≥
∫

|v|>2R

|v|2f0(v)dv − Cγ (1 + t)2−[2/s]

Rs−2+|γ | . (6.10)

The inequality (6.6) follows from (6.9) and (6.10).

Combining (6.5) and (6.6) and using e−R2/4 ≤ C

Rβ ≤ C(1+t)2−[2/s]
Rβ we get with a larger

constant 0 < K < ∞ such that for all R ≥ 3

‖f (t) − M‖L1
2
≥ 2

∫
|v|>2R

|v|2f0(v)dv − K(1 + t)2−[2/s]

(2R)β
, t ≥ 0. (6.11)

We can assume K ≥ max{K0, 6βN} so that the solution R(t) of (1.19) satisfies R(t) ≥ 6 for
all t ≥ 0. Therefore inserting R = 1

2 R(t) into (6.11) and using (1.19) gives (1.20).
Part (II). Recall the assumptions in the theorem. We have for all R ≥ R0

∫
|v|>R

f0(v)|v|2dv ≥ C

∫ ∞

R

r−1−δdr = CR−δ. (6.12)

Since δ < β , f0 satisfies (1.18). By Part (I) of Theorem 2, the solution f (v, t) satisfies (1.20)
with the function R(t) defined through (1.19) for some constant K ≥ N(R0)

β which implies
that R(t) ≥ R0 for all t ≥ 0. By (1.19) and (6.12) with R = R(t) we have

K(1 + t)2 ≥ C(R(t))β−δ.

So R(t) ≤ C(1 + t)2/(β−δ) and hence using (6.12) with R = R(t) again we obtain

∫
|v|>R(t)

f0(v)|v|2dv ≥ C(R(t))−δ ≥ C(1 + t)−2δ/(β−δ), t ≥ 0.

This proves (1.22).
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Part (III). Let s = 2. By the assumption on f0, and recalling that A1(t) = − d
dt

A(t) ≥ 0,
we have ∫

|v|>R

f0(v)|v|2dv ≥ C

∫ ∞

R

A1(r)dr = CA(R), ∀R ≥ R0. (6.13)

On the other hand, by assumptions on A(t), there is a constant C > 0 such that A(R) ≥
CR−δ for all R ≥ R0. Since δ < β , this implies that f0 satisfies (1.18) and thus from (1.19)
(with some constant K ≥ N(R0)

β ) we get as shown above that R(t) ≥ R0 and

K(1 + t) ≥ C(R(t))β−δ, t ≥ 0.

So R(t) ≤ c(1 + t)α with α = 1/(β − δ). Applying (6.13) with R = R(t), and recalling that
A(t) is non-increasing, we obtain

∫
|v|>R(t)

f0(v)|v|2dv ≥ CA(c(1 + t)α), t ≥ 0.

Finally by assumption (1.23) on A(t) it is easily proved that there are constants 0 < c1,C1 <

∞ such that A(c(1 + t)α) ≥ C1A(c1t
α) for all t ≥ 0. This proves (1.25). �

7 Upper Bounds on the Convergence Rate for γ ≥ −1 and Grad Angular Cutoff

This section is devoted to the proof of Theorem 3. There are several somewhat long and
technical arguments, as well as some that are shorter and more plainly motivated. We begin
with one of the more technical lemmas which shall later in this section be used to bound the
entropic moments as explained in the introduction. It is through this lemma that the condition
γ ≥ −1 enters Theorem 3. Next, in Lemma 7.2, we prove the Gronwall type lemma that we
shall use to get power law convergence out of the entropy production estimate that we shall
eventually prove here, and then, with the crucial preliminaries behinds us, in Lemma 7.3,
we recall Villani’s entropy production bound for super hard potentials, and explain how we
shall use it here. On a first reading of this section, the reader may wish to turn to Lemma 7.3,
and start from there, though in our exposition we now turn to Lemma 7.1.

Instead of considering directly the growth of entropic moments defined in terms of 〈v〉k ,
we shall instead use a more symmetric function S:

S(v, v∗, v′, v′
∗) = min{max{�(v),�(v∗)},max{�(v′),�(v′

∗)}} (7.1)

where

�(v) = min{〈v〉k,R}, k > 0,R > 0. (7.2)

The idea is that the difference � − S contributes a factor |v − v∗| that kills the singularity
|v − v∗|γ of B(v − v∗, σ ) and this is why we assume that −1 ≤ γ < 0, while the integral
involved S can be treated as an entropy dissipation. Also to overcome the problem of f0

having no pointwise lower bounds we consider a suitable convex combination of the solution
and the Maxwellian.

We need several lemmas.
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Lemma 7.1 Let b(·) ≥ 0 satisfy (1.27), 0 < β ≤ 1, and let �, S be introduced above with
k ≥ 1. Then for all 0 ≤ f ∈ L1

k ∩L1 logL(RN) we have (with cos θ = 〈(v − v∗)/|v − v∗|, σ 〉)
∫

RN ×RN ×SN−1

b(cos θ)

|v − v∗|β
(
S(v, v∗, v′, v′

∗) − �(v)
)+

ff∗ log+ f dσdv∗dv

≤ 2kA0

(‖f log+ f ‖L1 + ‖f ‖L1

)‖f ‖L1
k−β

, (7.3)

∫
RN ×RN ×SN−1

b(cos θ)

|v − v∗|β
(
�(v′) − S(v, v∗, v′, v′

∗)
)+

ff∗ log+ f ′ dσdv∗dv

≤ 4kNA0
(‖f log+ f ‖L1 + ‖f ‖L1

)‖f ‖L1
k−β

, (7.4)

where (y)+ = max{y,0} and A0 is given in (1.27).

Note that the right hand side of the inequalities do not depend on R, so letting R → ∞
one sees that (7.3)–(7.4) hold also for �(v) = 〈v〉k by Fatou’s Lemma.

To prove the lemma we will use the following formula which are results of changing
variables: Let W(t) ≥ 0, f (v) ≥ 0 be measurable on [−1,1] and RN respectively. Then for
all v ∈ RN

∫
RN ×SN−1

W(cos θ)f (v′)dσdv∗

=
(

|SN−2|
∫ π

0

W(cos θ) sinN−2 θ

sinN(θ/2)
dθ

)∫
RN

f (v∗)dv∗, (7.5)

∫
RN ×SN−1

W(cos θ)f (v′
∗)dσdv∗

=
(

|SN−2|
∫ π

0

W(cos θ) sinN−2 θ

cosN(θ/2)
dθ

)∫
RN

f (v∗)dv∗. (7.6)

Proof of Lemma 7.1 We first prove the following inequalities:
(
S(v, v∗, v′, v′

∗) − �(v)
)+ ≤ 2k〈v∗〉k−β |v − v∗|β, (7.7)

(
�(v′) − S(v, v∗, v′, v′

∗)
)+ ≤ k2k

(〈v〉k−β + 〈v∗〉k−β
)|v − v∗|βm(θ), (7.8)

m(θ)f∗
(
log+ f ′ + log+ f ′

∗
) ≤ 2f∗ log+ f∗ + 2Nf∗ + (m(θ))N

(
f ′ log+ f ′ + f ′

∗ log+ f ′
∗
)
,

(7.9)

where

m(θ) = min{sin(θ/2), cos(θ/2)}.
Given any (v, v∗, σ ) ∈ RN × RN × SN−1. Suppose �(v) < S(v, v∗, v′, v′∗). In this case we
have by definition of S that S(v, v∗, v′, v′∗) ≤ max{�(v), �(v∗)}. Consequently, 〈v〉 < 〈v∗〉
and so, |v − v∗| ≤ |v| + |v∗| ≤ 2〈v∗〉. Therefore,

0 < S(v, v∗, v′, v′
∗) − �(v) ≤ k〈v∗〉k−1|v − v∗| ≤ k2〈v∗〉k−β |v − v∗|β .

The other case to consider is slightly more involved. Suppose �(v′) > S(v, v∗, v′, v′∗). Then,

S(v, v∗, v′, v′
∗) = max{�(v), �(v∗)}.
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Since |v′ − v| = |v − v∗| sin(θ/2), |v′ − v∗| = |v − v∗| cos(θ/2), it follows that

0 < �(v′) − S(v, v∗, v′, v′
∗) = min{�(v′) − �(v),�(v′) − �(v∗)}

≤ k2k
(〈v〉k−β + 〈v∗〉k−β

) |v − v∗|βm(θ).

Next, if f (v′) ≤ f (v∗)(m(θ))−N , then

log+ f (v′) ≤ log+ f (v∗) + N | logm(θ)|

so that (using x| logx| ≤ 1 for 0 ≤ x ≤ 1)

m(θ)f (v∗) log+ f (v′)

≤ m(θ)f (v∗) log+ f (v∗) + Nm(θ)| logm(θ)|f (v∗)

≤ f (v∗) log+ f (v∗) + Nf (v∗).

If f (v′) ≥ f (v∗)(m(θ))−N , then f (v∗) ≤ (m(θ))Nf (v′) so that

m(θ)f (v∗) log+ f (v′) ≤ (m(θ))Nf (v′) log+ f (v′).

Thus

m(θ)f∗ log+ f ′ ≤ f∗ log+ f∗ + Nf∗ + (m(θ))Nf ′ log+ f ′.

With the same argument one has

m(θ)f∗ log+ f ′
∗ ≤ f∗ log+ f∗ + Nf∗ + (m(θ))Nf ′

∗ log+ f ′
∗.

So the inequalities (7.7)–(7.9) hold.
We now prove (7.3). From (7.7)–(7.9) we get

∫
RN ×RN ×SN−1

b(cos θ)

|v − v∗|β
(
S(v, v∗, v′, v′

∗) − �(v)
)+

ff∗ log+ f dσdv∗dv

≤ 2kA0

∫
RN ×RN

〈v∗〉k−βff∗ log+ f dv∗dv = 2kA0‖f log+ f ‖L1‖f ‖L1
k−β

.

Next, let I (f ) denote the integral on the left side of (7.4). Then

I (f ) :=
∫

RN ×RN ×SN−1

b(cos θ)

|v − v∗|β
(
�(v′) − S(v, v∗, v′, v′

∗)
)+

ff∗ log+ f ′ dσdv∗dv

≤ k2k

∫
RN ×RN ×SN−1

b(cos θ)m(θ)
(〈v〉k−β + 〈v∗〉k−β

)
ff∗ log+ f ′ dσdv∗dv

= k2k

∫
RN

(∫
RN ×SN−1

b(cos θ)m(θ)f∗(log+ f ′ + log+ f ′
∗)dσdv∗

)
〈v〉k−βf dv

≤ k2k

∫
RN

(∫
RN ×SN−1

b(cos θ)(2f∗ log+ f∗ + 2Nf∗)dσdv∗
)

〈v〉k−βf dv
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+k2k

∫
RN

(∫
RN ×SN−1

b(cos θ)(m(θ))N(f ′ log+ f ′

+f ′
∗ log+ f ′

∗)dσdv∗
)

〈v〉k−βf dv

:= I1 + I2.

Evidently,

I1 ≤ k2kA0

(
2‖f log+ f ‖L1 + 2N‖f ‖L1

)‖f ‖L1
k−β

.

To estimate I2, we use the formulas (7.5)–(7.6) to compute the inner integral
∫

RN ×SN−1
b(cos θ)(m(θ))N(f ′ log+ f ′ + f ′

∗ log+ f ′
∗)dσdv∗

= |SN−2|
∫ π

0
b(cos θ) sinN−2 θ

(
(m(θ))N

sinN(θ/2)
+ (m(θ))N

cosN(θ/2)

)
dθ‖f log+ f ‖L1

≤ 2|SN−2|
∫ π

0
b(cos θ) sinN−1 θdθ‖f log+ f ‖L1 = 2A0‖f log+ f ‖L1 .

Consequently,

I2 ≤ 2A0k2k‖f log+ f ‖L1

∫
RN

〈v〉k−βf dv = 2A0k2k‖f log+ f ‖L1‖f ‖L1
k−β

.

Combining the above estimates,

I (f ) ≤ k2kA0

(
4‖f log+ f ‖L1 + 2N‖f ‖L1

)‖f ‖L1
k−β

≤ 22kNA0

(‖f log+ f ‖L1 + ‖f ‖L1

)‖f ‖L1
k−β

. �

Lemma 7.2 Let u(t) ≥ 0 defined on [0,∞) be absolutely continuous on [0, T ] for all 0 <

T < ∞ and satisfy for some constants C1 > 0, C2 ≥ 0, k ≥ 0, ε > 0, η < 1,

d

dt
u(t) ≤ −C1(1 + t)−η[u(t)]1+ε + C2(1 + t)ke−t , a.e. t ≥ 0.

Then there is a constant 0 < C < ∞ depending only on C1, C2, k, ε, η, and u(0), such that

u(t) ≤ C(1 + t)−α, ∀ t ≥ 0

where α = 1−η

ε
.

Proof Choose a constant C ≥ max{u(0),1} large enough such that

Cε ≥ 1

C1
(α + C2(1 + t)k+α+1e−t ), ∀ t ≥ 0.

Let

U(t) = C(1 + t)−α, t ≥ 0.
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Then using α + 1 = α(ε + 1) + η and C ≥ 1 we compute

dU(t)

dt
+ C1(1 + t)−η[U(t)]1+ε − C2(1 + t)ke−t

= (1 + t)−α−1
(
C1C

1+ε − Cα
) − C2(1 + t)ke−t

≥ (1 + t)−α−1C
(
C1C

ε − α − C2(1 + t)k+α+1e−t
) ≥ 0.

By the absolute continuity of u(t), and u(0) ≤ U(0), we have for any t > 0,

(
u(t) − U(t)

)+

=
∫ t

0

(
d

dτ
u(τ) − d

dτ
U(τ)

)
1{u(τ)>U(τ)}dτ

≤
∫ t

0

(
− C1(1 + τ)−η[u(τ)]1+ε + C2(1 + τ)ke−τ − d

dτ
U(τ)

)
1{u(τ)>U(τ)}dτ

≤
∫ t

0

(
− C1(1 + τ)−η[U(τ)]1+ε + C2(1 + τ)ke−τ − d

dτ
U(τ)

)
1{u(τ)>U(τ)}dτ ≤ 0.

So u(t) ≤ U(t)∀ t ≥ 0. �

Lemma 7.3 (Villani’s inequality [28]) Let

D2(f ) = 1

4

∫
RN ×RN ×SN−1

(1 + |v − v∗|2)(ff∗ − f ′f ′
∗) log

(
ff∗
f ′f ′∗

)
dσdvdv∗

and let M ∈ L1
(1,0,1)(R

N) be the Maxwellian (1.9). Then for all f ∈ L1
(1,0,1) ∩ L1 logL(RN),

|SN−1|
4(2N + 1)

(N − T ∗
f )H(f |M) ≤ D2(f )

where H(f |M) is the relative entropy:

H(f |M) =
∫

RN

f log(f/M)dv = H(f ) − H(M) ≥ 0

and

T ∗
f = max

e∈SN−1

∫
RN

〈v, e〉2f (v)dv.

Moreover for any H0 ∈ [0,+∞)

inf
f ∈H0

(N − T ∗
f ) > 0 (7.10)

where H0 = {f ∈ L1
(1,0,1) ∩ L1 logL(RN) |H(f |M) ≤ H0}.

This result is Theorem 2.1 in [28], except for the lower bound (7.10), which is an elab-
oration of the remark following Theorem 2.1 in [28]. There it is observed that for T ∗

f = N
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to hold, f would have to be concentrated on a line, which is inconsistent with the finite
entropy hypothesis. That a uniform bound of the type (7.10) holds was communicated to us
by Villani, along with a sketched proof, and so we list it here as part of his theorem, and
provide a detailed proof of his bound:

First of all, one has the relation

inf
f ∈H0

(N − T ∗
f ) = inf

f ∈H0

∫
RN

|v̂|2f (v)dv, v̂ = (v2, . . . , vN).

Take ε > 0,R > 0,K > 1 and consider

∫
RN

|v̂|2f (v)dv ≥ ε2
∫

|v̂|≥ε

f (v)dv = ε2

(
1 −

∫
|v̂|<ε

f (v)dv

)
,

and
∫

|v̂|<ε

f (v)dv ≤
∫

|v̂|<ε,|v1|≤R,f (v)≤K

f (v)dv +
∫

|v1|>R

f (v)dv +
∫

f (v)>K

f (v)dv

≤ K2R(2ε)N−1 + N

R2
+

∫
f (v)>K

f (v)dv.

To estimate the remaining integral, we use Young’s inequality in the form

ab ≤ ca loga + ceb/c−1

valid for all a ≥ 0, b ≥ 0, c > 0. (The c = 1 case is standard. To generalize this to the present
case, replace b by b/c, and multiply through by c.) Taking a = f/M and b = 1{f (v)>K}, and
keeping c arbitrary for the moment, integrating this inequallity against M this leads to

∫
f (v)>K

f (v)dv ≤ c

∫
RN

(
f

M

)
log

(
f

M

)
M(v)dvdv + c

∫
R3

e(1/c)1{f (v)>K}−1M(v)dv

= cH(f |M) + c

e

∫
f (v)≤K

M(v)dv + c

∫
f (v)>K

e(1/c)−1M(v)dv

≤ cH0 + c

e
+ c

K
e(1/c)−1 := Cc,K,H0 (7.11)

where in the last line, we have used the condition H(f |M) ≤ H0, the fact that M < 1, and
Chebychev’s inequality to estimate the Lebesgue measure of {f (v) > K}.

Thus ∫
|v̂|<ε

f (v)dv ≤ 2NKRεN−1 + N

R2
+ Cc,K,H0 . (7.12)

With suitable choice of c > 0, K > 1,R > 1 and ε > 0, the right hand side of (7.12) is less
than 1/2. This gives (7.10).

Proof of Theorem 3 First of all, using inequality (1.15) and the Csiszar-Kullback inequality
‖f − M‖L1 ≤ √

2H(f |M), we have

‖f − M‖L1
2
≤ CN [H(f |M)]1/4, ∀f ∈ L1

(1,0,1) ∩ L1 logL(RN). (7.13)
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From (7.13), we see that to prove the theorem, it suffices to prove that there is a weak
solution f of (B) with f |t=0 = f0 such that for some constant 0 < C < ∞

H(f (t)|M) ≤ C(1 + t)−4λ, ∀ t ≥ 0 (7.14)

where λ is given in (1.29).
The proof consists of three steps.
Step 1. In the first two steps we assume in addition that B(z,σ ) is bounded: B(z,σ ) ≤

const. In this case it is well-known that (B) has a unique mild solution f ∈ C1([0,∞);
L1(RN)) ∩ L∞([0,∞);L1

2 ∩ L1 logL(RN)) satisfying f |t=0 = f0, and moreover, f con-
serves the mass, moment and energy, and satisfies the entropy identity (see e.g. [20]). Hence
by Proposition 1.1(b), the boundedness of B(z,σ ) implies that the mild solution f is also a
weak solution, and thus by Theorem 1, it satisfies the moment estimate:

‖f (t)‖L1
s
≤ C(1 + t),

∫ t

0
‖f (τ)‖L1

s−|γ |dτ ≤ C(1 + t) , t ≥ 0,

where the constant C is given in Theorem 1, in particular it does not depend on the L∞

bound of B(z,σ ).
To overcome the trouble that f may not have a lower bound, we consider a suitable

convex combination of f and the Maxwellian M :

g(v, t) = (1 − e−t−1)f (v, t) + e−t−1M(v). (7.15)

It is obvious that the flow t �→ g(t) has the same mass, momentum, and energy as f (t) and
holds the following properties that will be proven in this step:

log+ g ≤ log+ f, g log+ g ≤ f log+ f, (7.16)

log+(1/g(v, t)) ≤ C(1 + t)〈v〉2, (7.17)

H(f (t)|M) ≤ H(g(t)|M) + C(1 + t)e−t , (7.18)

d

dt
H(g(t)|M) ≤ −D(g(t)) + C(1 + t)e−t a.e. t ≥ 0, (7.19)

‖g(t) log+ g(t)‖L1
k
≤ C(1 + t)2 (k = s − 2). (7.20)

Here and below all constants 0 < C < ∞ depend only N,K∗,A0, γ, s,‖f0‖L1
s

and
‖f0 logf0‖L1

s
.

Proof of (7.16)–(7.18): By M(v) = (2π)−N/2e−|v|2/2 < 1 we have

g(v, t) ≥ 1 =⇒ g(v, t) ≤ f (v, t) =⇒ 0 ≤ logg(v, t) ≤ logf (v, t).

So (7.16) is true. (7.17) is obvious. To prove (7.18) we denote δ = e−t−1. Then

H(g(t)) ≥
∫

RN

(1 − δ)f log((1 − δ)f )dv +
∫

RN

δM log(δM)dv

= (1 − δ) log(1 − δ) + (1 − δ)H(f (t)) + δ log δ + δH(M).
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So using (1 − δ) log( 1
1−δ

) ≤ δ and 0 ≤ H(f (t)|M) ≤ H(f0|M) we obtain (7.18):

H(f (t)|M) ≤ H(g(t)|M) + (1 − δ) log

(
1

1 − δ

)
+ δH(f (t)|M) + δ log(1/δ)

≤ H(g(t)|M) + [H(f0|M) + 2 + t]e−t−1.

Now we are going to prove (7.19). Since f (v, t) is a mild solution and g(v, t) ≥
e−t−1M(v), the function t �→ g(v, t) logg(v, t) is also absolutely continuous on any finite
interval for almost every v ∈ RN . So we have for almost every v ∈ RN and for all t ≥ 0

g(v, t) logg(v, t) = g0(v) logg0(v)

+
∫ t

0
(1 + logg(v, τ ))

(
e−τ−1(f (v, τ ) − M(v))

+ (1 − e−τ−1)Q(f )(v, τ )
)
dτ. (7.21)

We need to show that there are no problems of integrability in v ∈ RN . In fact, it is easily
seen that the functions

g(v, t)| logg(v, t)|, |g0(v)| logg0(v)|,∫ t

0
(1 + | logg(v, τ )|)(f (v, τ ) + M(v))dτ,

∫ t

0
(1 + log+(1/g(v, τ ))[Q+(f )(v, τ ) + Q−(f )(v, τ )]dτ,

∫ t

0
Q−(f )(v, τ ) log+ g(v, τ )dτ

are all integrable on RN , while from (7.21) we see that the rest term

∫ t

0
(1 − e−τ−1)Q+(f )(v, τ ) log+ g(v, τ )dτ

is bounded by the summation of the above functions and thus it is also integrable on RN .
Since 1 − e−τ−1 > 1/2, it follows that

∫ t

0

∫
RN

Q+(f )(v, τ ) log+ g(v, τ )dvdτ < ∞.

Therefore there are no problems of integrability and we obtain for any 0 ≤ ϕ ∈ L∞(RN) and
for all t ≥ 0

∫
RN

ϕ(v)g(v, t) logg(v, t)dv

=
∫

RN

ϕ(v)g0(v) logg0(v)dv +
∫ t

0
dτ

∫
RN

ϕ(v)
(
e−τ−1(f (v, τ ) − M(v))

+ (1 − e−τ−1)Q(f )(v, τ )
)
(1 + logg(v, τ ))dv. (7.22)
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In particular taking ϕ(v) ≡ 1 we see that t �→ H(g(t)) is absolutely continuous on every
finite intervals and using conservation of mass and energy we have

d

dt
H(g(t)|M) = e−t−1

∫
RN

(f (v, t) − M(v)) logg(v, t)dv

+ (1 − e−t−1)

∫
RN

Q(f )(v, t) logg(v, t) dv a.e. t ≥ 0. (7.23)

Since supt≥0 ‖f (t) logf (t)‖L1 ≤ H(f0) + CN , it follows that

∫
RN

(f (v, t) − M(v)) logg(v, t)dv

=
∫

RN

f loggdv +
∫

RN

M log(1/g)dv

≤ ‖f (t) log+ f (t)‖L1 + C(1 + t)

∫
RN

〈v〉2M(v)dv ≤ C(1 + t).

To estimate the second term in the right hand side of (7.23), we let

G(v, t) = 1

1 − e−t−1
g(v, t) = f (v, t) + ζ(t)M(v), ζ(t) = e−t−1

1 − e−t−1
. (7.24)

Then (recalling M ′M ′∗ = MM∗)

f ′f ′
∗ − ff∗ − (G′G′

∗ − GG∗) = ζ(t)
(
Mf∗ + f M∗ − M ′f ′

∗ − M ′
∗f

′) (7.25)

and

G′G′
∗ − GG∗ = (1 − e−t−1)−2(g′g′

∗ − gg∗), (1 − e−t−1)ζ(t) = e−t−1 (7.26)

and so we compute

(1 − e−t−1)

∫
RN

Q(f )(v, t) logg(v, t) dv

= e−t−1
∫

RN ×RN ×SN−1
B(Mf∗ + f M∗ − M ′f ′

∗ − M ′
∗f

′) logg dσdv∗dv

− (1 − e−t−1)−1D(g(t)). (7.27)

Next using (7.17), (7.16) (for log+(1/g) and log+ g) we compute
∫

RN ×RN ×SN−1
B(Mf∗ + f M∗ − M ′f ′

∗ − M ′
∗f

′) logg dσdv∗dv

=
∫

RN ×RN ×SN−1
Bf M∗

(
logg + logg∗ + log(1/g′) + log(1/g′

∗)
)
dσdv∗dv

≤ A0

∫
RN ×RN

1

|v − v∗||γ | f M∗
(
log+ f + log+ f∗ + C(1 + t)(〈v〉2 + 〈v∗〉2)

)
dv∗dv

= A0

∫
RN

(∫
RN

M∗
|v − v∗||γ | dv∗

)
f log+ f dv
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+ A0

∫
RN

(∫
RN

1

|v − v∗||γ | M∗ log+ f∗dv∗
)

f dv

+ C(1 + t)

∫
RN

(∫
RN

M∗
|v − v∗||γ | dv∗

)
〈v〉2f dv

+ C(1 + t)

∫
RN

(∫
RN

〈v∗〉2M∗
|v − v∗||γ | dv∗

)
f dv

≤ C(1 + t) + C‖f (t) log+ f (t)‖L1 ≤ C(1 + t).

Here we used the fact that 〈·〉sM ∈ L∞ ∩ L1(RN) and log+ f ∈ Lp ∩ L1(RN) for all 1 <

p < ∞.
Summarizing the above estimates we obtain (7.19).
Proof of (7.20): This is the main estimate in this step. To do this we shall use the functions

�R(v), SR(v, v∗, v′, v′∗) defined in (7.1)–(7.2) for �R(v) = min{〈v〉k, R} with k = s − 2.
Let

Hk,R(g(t)) =
∫

RN

�R(v)g(v, t) logg(v, t)dv,

H+
k,R(g(t)) =

∫
RN

�R(v)g(v, t) log+ g(v, t)dv,

H−
k,R(g(t)) =

∫
RN

�R(v)g(v, t) log+(1/g(v, t))dv.

To prove (7.20), it suffices to prove that

Hk,R(g(t)) ≤ C(1 + t)2 + C

∫ t

0
e−τH+

k,R(g(τ ))dτ, ∀ t ≥ 0 (7.28)

where and below all the constants C do not depend on R and ‖B‖L∞ . In fact if (7.28)
holds true, then using H+

k,R(g(t)) = Hk,R(g(t)) + H−
k,R(g(t)) and the obvious estimate

H−
k,R(g(t)) ≤ C(1 + t)max{‖f (t)‖L1

k+2
, ‖M‖L1

k+2
} ≤ C(1 + t)2 we get

H+
k,R(g(t)) ≤ C(1 + t)2 + C

∫ t

0
e−τH+

k,R(g(τ ))dτ, ∀ t ≥ 0.

So applying Gronwall’s Lemma gives

H+
k,R(g(t)) ≤ C(1 + t)2 exp

(∫ t

0
Ce−τ dτ

)
≤ C(1 + t)2.

Then letting R → ∞ leads to (7.20) by Fatou’s Lemma.
For the sake of brevity, we shall abbreviate as follows:

SR = SR(v, v∗, v′, v′
∗), �R = �R(v), �′

R = �R(v′), (�R)′
∗ = �R(v′

∗), etc.

This abbreviation scheme, with the primes especially, is standard in kinetic theory, and
should render our formulas easier to scan.

Now we begin to prove (7.28). It has been shown in the above that there are no problem of
integrability and the function t �→ Hk,R(g(t)) is absolutely continuous on any finite intervals.
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We compute using (7.22) with ϕ = �R that

d

dt
Hk,R(g(t)) = e−t−1

∫
RN

�R(v)(f (v, t) − M(v))dv

+ (1 − e−t−1)

∫
RN

�R(v)Q(f )(v, t)dv

+ e−t−1
∫

RN

�R(v)(f (v, t) − M(v)) logg(v, t)dv

+ (1 − e−t−1)

∫
RN

�R(v)Q(f )(v, t) logg(v, t)dv

:= I
(1)
k,R(t) + I

(2)
k,R + I

(3)
k,R(t) + I

(4)
k,R(t).

To estimate these terms we shall use the following inequality:

|�R(w) − SR(v, v∗, v′, v′
∗)| ≤ k(〈v〉2 + 〈v∗〉2)(k−|γ |)/2|v − v∗||γ |,

∀w ∈ {v, v∗, v′, v′
∗}. (7.29)

Now we are going to estimate I
(i)
k,R (i = 1,2,3,4). Let us emphasize again that all constants

C are independent of R and ‖B‖L∞(RN ×SN−1).
The first one is easy: By moment estimate we have

I
(1)
k,R(t) ≤ e−t−1‖f (t)‖L1

k
≤ C(1 + t)e−t .

For the second term we use the vanishing property
∫

RN ×RN ×SN−1
B(v − v∗, σ )SR(v, v∗, v′, v′

∗)(f
′f ′

∗ − ff∗)dσdv∗dv = 0 (7.30)

which is due to the symmetry

SR(v, v∗, v′, v′
∗) = SR(v∗, v, v′

∗, v
′) = SR(v′, v′

∗, v, v∗), etc.

Then using (7.29) we compute

I
(2)
k,R(t) = (1 − e−t−1)

∫
RN ×RN ×SN−1

B(�R − SR)(f ′f ′
∗ − ff∗)dσdv∗dv

≤ C‖f (t)‖L1
k−|γ |

≤ C(1 + t).

For the third term I
(3)
k,R(t) we use the control

f (v, t) ≤ 1

1 − e−t−1
g(v, t)

to see that

I
(3)
k,R(t) ≤ e−t−1

∫
RN

�Rf log+ gdv + e−t−1
∫

RN

�RM log+(1/g)dvdτ

≤ e−tH+
k,R(g(t)) + C(1 + t)e−t .



On Strong Convergence to Equilibrium for the Boltzmann Equation 731

The estimate of the last term I
(4)
k,R(t) is the key part of this section. One will see that in

this estimate the term H+
k,R(g(t)) can not be avoided and this is why we introduce the decay

weight e−t−1 rather than the equal weight 1/2.
Inserting the function G′G′∗ − GG∗ = (1 − e−t−1)−2(g′g′∗ − gg∗) (see (7.24), (7.26)) we

have

I
(4)
k,R(t) = (1 − e−t−1)

∫
RN ×RN ×SN−1

B�R(f ′f ′
∗ − ff∗) logg dσdv∗dv

= (1 − e−t−1)

∫
RN ×RN ×SN−1

B�R

(
f ′f ′

∗ − ff∗ − (G′G′
∗ − GG∗)

)
logg dσdv∗dv

+ (1 − e−t−1)−1
∫

RN ×RN ×SN−1
B(�R − SR)(g′g′

∗ − gg∗) logg dσdv∗dv

+ (1 − e−τ−1)−1
∫

RN ×RN ×SN−1
BSR(g′g′

∗ − gg∗) logg dσdv∗dv

:= I
(4,1)
k,R (t) + I

(4,2)
k,R (t) + I

(4,3)
k,R (t).

Further estimate using (7.25) and (1 − e−t−1)ζ(t) = e−t−1:

I
(4,1)
k,R (t) ≤ e−t−1

∫
RN ×RN ×SN−1

B�RMf∗ log+ g dσdv∗dv

+ e−t−1
∫

RN ×RN ×SN−1
B�Rf M∗ log+ g dσdv∗dv

+ e−t−1
∫

RN ×RN ×SN−1
B�R(M ′f ′

∗ + f ′M ′
∗) log+(1/g)dσdv∗dv

:= I
(4,1,1)
k,R (t) + I

(4,1,2)
k,R (t) + I

(4,1,3)
k,R (t),

I
(4,1,1)
k,R (t) ≤ A0e

−t−1
∫

RN

(∫
RN

〈v〉kM
|v − v∗||γ | log+ g dv

)
f∗dv∗

≤ Ce−t−1‖f (t)‖L1 ≤ C,

and (using f (v, t) ≤ 1
1−e−t−1 g(v, t))

I
(4,1,2)
k,R (t) ≤ A0

e−t−1

1 − e−t−1

∫
RN

(∫
RN

M∗dv∗
|v − v∗||γ |

)
�R g log+ g dv

≤ Ce−t

∫
RN

�R g log+ g dv = Ce−tH+
k,R(g(t)).

For I
(4,1,3)
k,R (t) we change variables and use inequality

�′
R log+(1/g′) + (�R)′

∗ log+(1/g′
∗) ≤ C(1 + t)〈v〉k+2〈v∗〉k+2

recalling k + 2 = s to get
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I
(4,1,3)
k,R (t) = e−t−1

∫
RN ×RN ×SN−1

B
(
�′

R log+(1/g′) + (�R)′
∗ log+(1/g′

∗)
)
M∗f dσdv∗dv

≤ CA0(1 + t)e−t−1
∫

RN

(∫
RN

〈v∗〉sM∗
|v − v∗||γ | dv∗

)
〈v〉sf dv

≤ C(1 + t)e−t−1‖f (τ)‖L1
s
≤ C(1 + t)2e−t .

Thus

I
(4,1)
k,R (t) ≤ Ce−tH+

k,R(g(t)) + C.

Estimate of I
(4,2)
k,R (t): Neglecting negative parts we have

I
(4,2)
k,R (t) = (1 − e−t−1)−1

∫
RN ×RN ×SN−1

B(�′
R − SR)gg∗ logg′ dσdv∗dv

+ (1 − e−t−1)−1
∫

RN ×RN ×SN−1
B(SR − �R)gg∗ logg dσdv∗dv

≤ 2
∫

RN ×RN ×SN−1
B(�′

R − SR)+gg∗ log+ g′ dσdv∗dv

+ 2
∫

RN ×RN ×SN−1
B(SR − �′

R)+gg∗ log+(1/g′) dσdv∗dv

+ 2
∫

RN ×RN ×SN−1
B(SR − �R)+gg∗ log+ g dσdv∗dv

+ 2
∫

RN ×RN ×SN−1
B(�R − SR)+gg∗ log+(1/g)dσdv∗dv

:= I
(4,2,1)
k,R (t) + I

(4,2,2)
k,R (t) + I

(4,2,3)
k,R (t) + I

(4,2,4)
k,R (t).

Using B(v − v∗, σ ) ≤ b(cos θ)|v − v∗|−|γ | and Lemma 7.1 with β = |γ | we have

I
(4,2,1)
k,R (t) + I

(4,2,3)
k,R (t) ≤ C

(‖g log+ g‖L1 + ‖g‖L1

)‖g‖L1
k−|γ |

≤ C(1 + t),

while using (7.29) and log+(1/g′) ≤ C(1 + t)(〈v〉2 + 〈v∗〉2) gives

I
(4,2,2)
k,R (t) + I

(4,2,4)
k,R (t) ≤ C(1 + t)‖g(t)‖L1

s−|γ | .

Since ‖g(t)‖L1
s−|γ | ≤ ‖f (t)‖L1

s−|γ | + C, it follows that

I
(4,2)
k,R (t) ≤ C(1 + t)(‖f (t)‖L1

s−|γ |
+ 1).

The last term I
(4,3)
k,R (t) is negative which is due to the total symmetry of SR(v, v∗, v′, v′∗):

Using classical derivation one has

I
(4,3)
k,R (t) = −(1 − e−t−1)−1DSR

(g(t)) ≤ 0

where

DSR
(g(t)) = 1

4

∫
RN ×RN ×SN−1

BSR(g′g′
∗ − gg∗) log

(
g′g′∗
gg∗

)
dσdv∗dv ≥ 0.
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Summarizing the above we obtain

I
(4)
k,R(t) ≤ C(1 + t)(‖f (t)‖L1

s−|γ | + 1) + Ce−tH+
k,R(g(t)).

And therefore collecting all estimates of I
(1)
k,R(t), I

(2)
k,R(t), I

(3)
k,R(t), I

(4)
k,R(t) we obtain

d

dt
Hk,R(g(t)) ≤ C(1 + t)(‖f (t)‖L1

s−|γ | + 1) + Ce−tH+
k,R(g(t)) a.e. t ≥ 0.

Since
∫ t

0 ‖f (τ)‖L1
s−|γ |dτ ≤ C(1 + t) and Hk,R(g(0)) ≤ ‖f0 log+ f0‖L1

2
, it follows that

Hk,R(g(t)) ≤ C + C

∫ t

0
(1 + τ)(‖f (τ)‖L1

s−|γ | + 1)dτ + C

∫ t

0
e−τH+

k,R(g(τ ))dτ

≤ C(1 + t)2 + C

∫ t

0
e−τH+

k,R(g(τ ))dτ.

This proves (7.28) and finishes the Step 1.
Step 2. The method of proving (7.14) is to establish an inequality between H(g(t)) and

D(g(t)) as has been done in the case of hard potentials, see e.g. [6, 8, 23]. [Note that g(v, t)

is not a solution of (B), but it is better than a solution in the present sense . . . .] We shall
prove that

D(g(t)) ≥ c(1 + t)−2ε[H(g(t)|M)]1+ε, ∀ t ≥ 0 (7.31)

where

ε = 2 + |γ |
k − 2

<
1

2
, k = s − 2 (> 6 + 2|γ |).

If (7.31) holds true, then by the differential inequality (7.19) we get

d

dt
H(g(t)|M) ≤ −c(1 + t)−2ε[H(g(t)|M)]1+ε + C(1 + t)e−t a.e. t ∈ [0,∞).

Applying Lemma 7.2 we then obtain (with α = 1−2ε
ε

≥ 4λ)

H(g(t)|M) ≤ C(1 + t)−α ≤ C(1 + t)−4λ

and hence (7.14) follows from (7.18).
To prove (7.31), we consider

Dk(g) = 1

4

∫
RN ×RN ×SN−1

(1 + |v − v∗|2)k/2(g′g′
∗ − gg∗) log

(
g′g′∗
gg∗

)
dσdvdv∗

and make use of Villani’s inequality (see Lemma 7.3 and note that H(g(t)|M) ≤
H(f (t)|M) ≤ H(f0|M)):

CH0H(g(t)|M) ≤ D2(g(t)) (7.32)

where

CH0 = |SN−1|
4(2N + 1)

inf
f ∈H0

(N − T ∗
f ) > 0, H0 = H(f0|M).
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By assumption K∗(1 + |z|2)−|γ |/2 ≤ B(z,σ ) and writing k
2 = (1 + |γ |

2(1+ε)
) · 1+ε

ε
we have

K
1

1+ε∗ (1 + |z|2) ≤ [B(z,σ )] 1
1+ε

(
(1 + |z|2)k/2

) ε
1+ε .

So by Hölder’s inequality

K∗[D2(g(t))]1+ε ≤ D(g(t))[Dk(g(t))]ε, t ≥ 0. (7.33)

Now we prove that

Dk(g(t)) ≤ C(1 + t)2. (7.34)

By symmetry we have

Dk(g) = 1

2

∫
RN ×RN ×SN−1

(1 + |v − v∗|2)k/21{gg∗≥g′g′∗}(gg∗ − g′g′
∗) log

(
gg∗
g′g′∗

)
dσdvdv∗.

Note that using (7.17) gives

log

(
1

g′g′∗

)
≤ C(1 + t)(〈v〉2 + 〈v∗〉2).

So if gg∗ ≥ g′g′∗ then

(gg∗ − g′g′
∗) log

(
gg∗
g′g′∗

)
≤ gg∗

(
log(gg∗) + log

(
1

g′g′∗

))

≤ gg∗ log+ g + gg∗ log+ g∗ + Cgg∗(1 + t)(〈v〉2 + 〈v∗〉2).

Since (1 + |v − v∗|2)k/2 ≤ 2k−1(〈v〉k + 〈v∗〉k), it follows from the main estimate (7.20),
‖g(t) log+ g(t)‖L1 ≤ ‖f (t) log+ f (t)‖L1 ≤ C, ‖g(t)‖L1

s
≤ C(1 + t), and k + 2 = s that

Dk(g(t)) ≤ C

∫
RN ×RN

(〈v〉k + 〈v∗〉k)g log+(g)g∗dvdv∗

+ C(1 + t)

∫
RN ×RN

(〈v〉k+2 + 〈v∗〉k+2)gg∗dvdv∗

≤ C
(‖g(t) log+ g(t)‖L1

k
+ ‖g(t) log+ g(t)‖L1‖g(t)‖L1

k
+ (1 + t)‖g(t)‖L1

s

)

≤ C(1 + t)2.

This proves (7.34). Combining (7.32)–(7.34) we obtain

K∗[CH0H(g(t)|M)]1+ε ≤ C(1 + t)2εD(g(t))

which gives (7.31).
Step 3. Let B(z,σ ) be given in the theorem. We shall use approximate solutions. Let

Bn(z, σ ) = min{B(z,σ ), n}, n ≥ K∗.

It is obvious that for all n ≥ K∗, Bn(z, σ ) ≥ K∗(1 + |z|2)−|γ |/2. For each n ≥ K∗, let f n ∈
C1([0,∞);L1(RN)) ∩ L∞([0,∞);L1

2 ∩ L1 logL(RN)) be the unique mild solution of (B)
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with the kernel Bn and f n|t=0 = f0 and f n has all properties as listed in Steps 1 and 2. In
particular f n satisfies for all n ≥ K∗ and all t ≥ 0

H(f n(t)|M) ≤ C(1 + t)−4λ

with the same constants λ > 0 and 0 < C < ∞ (which is of course independent of n). As
argued in the proof of existence of weak solutions, there exists a subsequence {f nk }∞

k=1 of
{f n} and a weak solution f of (B) satisfying f |t=0 = f0, such that

∀ t ≥ 0, f nk (·, t) ⇀ f (·, t) (k → ∞) weakly in L1(RN).

Then by convexity and weak convergence, we obtain

H(f (t)|M) ≤ lim inf
k→∞

H(f nk (t)|M) ≤ C(1 + t)−4λ, ∀ t ≥ 0.

This completes the proof. �
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